
Simulation Experiment Description Markup
Language (SED-ML) :

Level 1 Version 1

March 25, 2011

Editors

Dagmar Waltemath University of Rostock, Germany
Frank T. Bergmann University of Washington, Seattle, USA
Richard Adams University of Edinburgh, UK
Nicolas Le Novère European Bioinformatics Institute, UK

The latest release of the Level 1 Version 1 specification is available at
http://sed-ml.org/

To discuss any aspect of the current SED-ML specification as well as language
details, please send your messages to the mailing list

sed-ml-discuss@lists.sourceforge.net.

To get subscribed to the mailing list, please write to the same address
sed-ml-discuss@lists.sourceforge.net.

To contact the authors of the SED-ML specification, please write to
sed-ml-editors@lists.sourceforge.net

http://sed-ml.org/
mailto:sed-ml-discuss@lists.sourceforge.net
mailto:sed-ml-discuss@lists.sourceforge.net
mailto:sed-ml-editors@lists.sourceforge.net

1 Introduction 4

1.1 Motivation: A sample experiment . 5

1.1.1 A simple time-course simulation . 5

1.1.2 Applying pre-processing . 5

1.1.3 Applying post-processing . 6

1.2 Overview of SED-ML . 8

1.2.1 Conventions . 8

1.2.2 Models . 10

1.2.3 Simulation setup . 10

1.2.4 Task . 11

1.2.5 Output . 11

1.2.6 Data Generator . 12

2 SED-ML technical specification 13

2.1 Conventions used in this document . 14

2.1.1 UML Classes . 14

2.1.2 UML Relationships . 14

2.1.3 XML Schema language elements . 15

2.1.4 Type extensions . 17

2.2 Concepts used in SED-ML . 18

2.2.1 MathML subset . 18

2.2.2 URI Scheme . 19

2.2.3 XPath usage . 20

2.2.4 KiSAO . 21

2.2.5 SED-ML resources . 21

2.3 General attributes and classes . 22

2.3.1 id . 22

2.3.2 name . 22

2.3.3 SEDBase . 22

2.3.4 SED-ML top level element . 25

2.3.5 Reference relations . 26

2.3.6 Variable . 29

2.3.7 Parameter . 31

2.3.8 ListOf* containers . 32

2.4 SED-ML Components . 37

2.4.1 Model . 37

2.4.2 Change . 39

2.4.3 Simulation . 45

2.4.4 Task . 48

2.4.5 DataGenerator . 48

2.4.6 Output . 51

2

2.4.7 Output components . 53

3 Acknowledgements 59

A SED-ML UML Overview 60

B XML Schema 61

C Examples 67

C.1 Le Loup Model (SBML) . 68

C.2 Le Loup Model (CellML) . 70

C.3 The IkappaB-NF-kappaB signaling module (SBML) . 73

D SED-ML archive 75

3

1. Introduction

As Systems Biology transforms into one of the main fields in life sciences, the number of available
computational models is growing at an ever increasing pace. At the same time, their size and complexity
are also increasing. The need to build on existing studies by reusing models therefore becomes more
imperative. It is now generally accepted that one needs to be able to exchange the biochemical and
mathematical structure of models. The efforts to standardise the representation of computational models
in various areas of biology, such as the Systems Biology Markup Language (SBML, [Hucka et al., 2003]),
CellML [Lloyd et al., 2004] or NeuroML [Goddard et al., 2001], resulted in such an increase of the
exchange and re-use of models. However, the description of the structure of models is not sufficient to
enable the reproduction of simulation results. One also needs to describe the procedures the models
are subjected to, as described by the Minimum Information About a Simulation Experiment (MIASE)
[Waltemath et al., 2011].

This document presents Level 1 Version 1 of the Simulation Experiment Description Markup Language
(SED-ML), a computer-readable format for encoding simulation experiments. SED-ML files are encoded
in the eXtensible Markup Language (XML) [Bray et al., 2006]. The SED-ML format is defined by an
XML Schema [Fallside et al., 2001].

4

Figure 1.1: Time-course simulation of the repressilator model, imported from BioModels Database
and simulated in COPASI. The number of repressor proteins lacI, tetR and cI is shown. (taken from
Waltemath et al. [2011])

1.1 Motivation: A sample experiment

To demonstrate how a simulation experiment can be described simply and effectively, we make use of a
rather simple, though famous, model that may yet display rich and variable behaviors. The simulation
example is taken from Waltemath et al. [2011].

The repressilator is a synthetic oscillating network of transcription regulators in Escherichia coli [Elowitz
and Leibler, 2000]. The network is composed of the three repressor genes Lactose Operon Repressor
(lacI), Tetracycline Repressor (tetR) and Repressor CI (cI), which code for proteins binding to the
promoter of the other, blocking their transcription. The three inhibitions together in tandem, form
a cyclic negative-feedback loop. To describe the interactions of the molecular species involved in the
network, the authors built a simple mathematical model of coupled first-order differential equations. All
six molecular species included in the network (three mRNAs, three repressor proteins) participated in
creation (transcription/translation) and degradation processes. The model was used to determine the
influence of the various parameters on the dynamic behavior of the system. In particular, parameter
values were sought which induce stable oscillations in the concentrations of the system components.
Oscillations in the levels of the three repressor proteins are obtained by numerical integration.

1.1.1 A simple time-course simulation

The first experiment we intend to run on the model is the simulation that will lead to the oscillation
shown in Figure 1c of the reference publication [Elowitz and Leibler, 2000]. The according simulation
experiment can be described as:

1. Import the model identified by the Unified Resource Identifier (URI) [Berners-Lee et al., 2005]
urn:miriam:biomodels.db:BIOMD0000000012.

2. Select a deterministic method.

3. Run a uniform time course simulation for 1000 min with an output interval of 1 min.

4. Plot the amount of lacI, tetR and cI against time in a 2D Plot.

Following those steps and performing the simulation in the simulation tool COPASI [Hoops et al., 2006]
led to the result shown in Figure 1.1.

1.1.2 Applying pre-processing

The fine-tuning of the model can be shown by adjusting parameters before simulation. When changing
the initial values of the parameters protein copies per promoter and leakiness in protein copies per
promoter the system’s behavior switches from sustained oscillation to asymptotic steady-state. The
adjustments leading to that behavior may be described as:

1. Import the model as above.

5

urn:miriam:biomodels.db:BIOMD0000000012

Figure 1.2: Time-course simulation of the repressilator model, imported from BioModels Database
and simulated in COPASI after modification of the initial values of the protein copies per promoter
and the leakiness in protein copies per promoter. The number of repressor proteins lacI, tetR and
cI is shown. (taken from Waltemath et al. [2011])

2. Change the value of the parameter tps repr from “0.0005” to “1.3e-05”.

3. Change the value of the parameter tps active from “0.5 “ to “ 0.013“.

4. Select a deterministic method.

5. Run a uniform time course for the duration of 1000 min with an output interval of 1 min.

6. Plot the amount of lacI, tetR and cI against time in a 2D Plot.

Figure 1.2 shows the result of the simulation.

1.1.3 Applying post-processing

The raw numerical output of the simulation steps may be subjected to data post-processing before
plotting or reporting. In order to describe the production of a normalized plot of the time-course in the
first example (section 1.1.1), depicting the influence of one variable on another (in phase-planes), one
could define the following further steps:

(Please note that the description steps 1 - 4 remain as given in section 1.1.2 above.)

5. Collect lacI(t) , tetR(t) and cI(t).

6. Compute the highest value for each of the repressor proteins, max(lacI(t)), max(tetR(t)), max(cI(t)).

7. Normalize the data for each of the repressor proteins by dividing each time point by the maximum
value, i. e. lacI(t)/max(lacI(t)), tetR(t)/max(tetR(t)) , and cI(t)/max(cI(t)).

8. Plot the normalized lacI protein as a function of the normalized cI, the normalized cI as a
function of the normalized tetR protein, and the normalized tetR protein against the normalized
lacI protein in a 2D plot.

Figure 1.3 on the following page illustrates the result of the simulation after post-processing of the output
data.

6

Figure 1.3: Time-course simulation of the repressilator model, imported from BioModels Database
and simulated in COPASI, showing the normalized temporal evolution of repressor proteins lacI,
tetR and cI in phase-plane. (taken from Waltemath et al. [2011])

7

1.2 Overview of SED-ML

The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format for the
description of simulation experiments. It serves to store information about the simulation experiment
performed on one or more models with a given set of outputs. Support for SED-ML compliant simulation
descriptions will enable the exchange of simulation experiments across tools.

1.2.1 Conventions

The Business Process Modeling Notation Version 1.2 (BPMN) was initially intended to describe internal
business procedures (processes) in a graphical way. However, we will use BPMN to graphically describe
the steps and processes of setting up a simulation experiment description. The major parts of BPMN
that are used to specify SED-ML are activities, gateways, events, data, and documentation.

An activity is “work that is performed on a [..] process”, for example “Specify the simulation settings”.
Activities may be atomic or non-atomic. SED-ML in particular makes use of the task activities, i. e.,
specific work units that need to be performed. Non-atomic tasks might be collapsed or expanded in
the graphical representation (Figure 1.4). Each collapsed subprocess has a corresponding expanded
subprocess definition.

Figure 1.4: BPMN activities: task, collapsed process, expanded subprocess

Gateways serve as means to control the flow of sequence in the diagram. As the term already implies, a
gateway needs some “mechanism that either allows or disallows passage through” [White et al., 2004].
The result of a gateway pass-through can be that processes are merged or split. Graphically, a gateway
is represented as a diamond.

Figure 1.5: BPML gateway types: Exclusive (left), parallel (right)

While there exist a number of different gateway types [White et al., 2004, p. 93], the SED-ML specification
only uses the parallel and the exclusive gates (Figure 1.5).

Exclusive gateways – also denoted as decisions – allow the sequence flow to take two or more alternative
paths (Figure 1.5, left hand side). However, only one of the paths may be chosen (not more). Sometimes
two alternative branches need to be merged together again, in which case the exclusive gate must be
used as well: The sequence flow continues as soon as one of the incoming processes send a signal. An
exclusive gateways is marked by an X in the graphical notation.

Parallel gateways, “provide a mechanism to synchronize parallel flow and to create parallel flow” [White
et al., 2004] (Figure 1.5, right hand side). They are used to show parallel paths in the workflow; even if

8

sometimes not required they might help in understanding the process. Synchronisation allows to start
two processes in parallel at the same time in the sequence flow: The sequence flow will continue with
all processes leaving the parallel gateway. Joining two processes with a parallel gateway is also possible:
the process flow will only continue after a signal has arrived from all processes coming in the parallel
gateway. A parallel gateway is marked by a + in the graphical notation.

Events mark everything happening during the execution of the sequence flow, usually they interrrupt the
business process, having some cause or impact on the execution. From the broad range of events that
BPMN offers, SED-ML only uses a small subset, namely the start event and the end event (Figure 1.6).

Figure 1.6: BPML connectors (left) and events (right).

All events are graphically drawn as small circles. A start event is drawn with a single thin line and mark
the start of a process, it can not have any incoming sequence flow. Start events may be triggered by
different mechanisms, for the case of SED-ML the untyped start event (no marker inside the circle) is
used. The trigger to start the process is “Create new simulation experiment”. The end event is marked
with a thick line. It indicates the end of a process. SED-ML specification makes use of the untyped
end event (no marker inside the circle). The end event is used to show the end of sub-processes as well
as processes. If the end of a sub-process is reached, the sequence flow returns to the according parent
process.

Connectors are used to combine different BPMN objects with each other (White et al. [2004, p. 30] show
the full list of valid connections). SED-ML uses only a subset of available connectors, namely sequence
flow, default flow, and unidirectional associations (Figure 1.6). Sequence flow defines the execution
order of activities. Default flow marks the default branch to be chosen if other conditions leave various
possibilities for further execution of the sequence flow. A unidirectional association is used to indicate
that a data object is modified, i. e. read and written during the execution of an activity [Business Process
Technology group, 2009].

The rough SED-ML workflow is shown in Figure 1.7. The process of defining a SED-ML simulation

Figure 1.7: The process of defining a simulation experiment in SED-ML (overview)

experiment starts by initialising the experiment and creating a new SED-ML file. Afterwards, the
models needed for the simulation are specified and stored into the existing SED-ML file (Section 1.2.2).
In a third step, the simulation experiment setups are defined and stored into the same file (Section 1.2.3).
To assign a setup to a number of models used in the experiment, these connections have to be defined
and recorded (Section 1.2.4), called task in SED-ML. After simulation, the output should be defined,

9

based on the specified tasks and performed simulation experiment. The information is added to the
existing SED-ML file (Section 1.2.5). In the end, the whole experiment is stored in the final SED-ML
file. All collapsed processes are described in the following sections. Examples in XML are provided in
the more technical description.

1.2.2 Models

To define a simulation experiment, first of all a new SED-ML file is created. The models to be used in
the experiment (zero or many) are referenced, using a link to a model description in some open, curated
model database (e. g. Biomodels Database [Li et al., 2010] or CellML Repository [Beard et al., 2009]).
All necessary changes to correctly simulate the model are defined, e. g., assigning new parameter values
or updating the mathematics of the model (Figure 1.8). The procedure is repeated until all models

Figure 1.8: The process of defining model(s) in SED-ML

participating in the experiment have been described. Each such model gets an internal SED-ML ID and
an optional name.

1.2.3 Simulation setup

Secondly, the simulation setups (zero or many) used throughout the simulation experiment are described
(Figure 1.9). Those may stem from various different types of simulation, e. g., steady state analysis or

Figure 1.9: The process of defining simulation(s) in SED-ML

bifurcation. Depending on the specific type of experiment, the information encoded for the simulation
setup might differ. Thus, the definition of simulation settings is specific to the simulation experiment.

In a simple case the experiment consists of one simulation, but it can get far more complex. For example,
one might define a nested sequence of simulations, in which case every simulation has to be defined
separately. Each simulation setup gets its own internal ID and an optional name. For each of the setups,
the simulation algorithm to be used for that simulation is defined through a reference to a well-defined

10

algorithm name, e. g. an ontology or controlled vocabulary. One approach to define such a controlled
vocabulary of simulation algorihtms is the Kinetic Simulation Algorithm Ontology (Section 2.2.4). The
setup definition is repeated until all different simulations have been described.

1.2.4 Task

SED-ML allows to apply one defined simulation setting to one defined model at a time. However, any
number of tasks may be defined inside a simulation experiment description (Figure 1.10). To do so, each

Figure 1.10: The process of defining simulation task(s) in SED-ML

task refers to one of the formerly specified models and to one of the formerly specified simulation setups.
Each task has its own ID and an optional name. The process of task definition is repeated until all tasks
have been defined.

The current SED-ML does not allow to nest or order tasks. However, these features are evaluated for
future versions of SED-ML.

1.2.5 Output

The SED-ML finally consists of output definitions that describe what kind of output the experiment uses
to present the simulation result to the user, i. e., a plot or a data table (Figure 1.11), and also which
data is part of the output. Therefore, SED-ML first defines a set of data generators (Figure 1.12), which

Figure 1.11: The process of defining output(s) in SED-ML

11

are then used to specify a particular result, i. e. output (Section 1.2.6).

The SED-ML specification comes with three pre-defined types of outputs: 2D- and 3D plots, and reports.
All use the aforementioned data generators to specify the information to be plotted on the different axes,
or in the table comlumns respectively.

1.2.6 Data Generator

Figure 1.12: The process of defining data generator(s) in SED-ML

A data generator may use data elements, e. g., variables or parameters, that either (1) have been taken
directly from the model, or (2) have been generated in a post-processing step. If post-processing needs
to be applied, variables and parameters from the various, previously defined models may be used, but
also existing global parameters, such as time. If the variables are taken from existing models, a reference
to the model and the particular variable needs to be given. If post-processing is necessary, a reference
to an existing variable or parameter, including other data generators, has to be provided. Additional
mathematical rules to be applied on the referred variable or parameter must then be specified. In a
SED-ML file, any number of data generators can be created for later re-use in the output definition.

12

2. SED-ML technical specification

This document represents the technical specification of SED-ML. We also provide an XML Schema
[W3C, 2004] and a UML Class diagram representation of that XML Schema (Appendix A). UML class
diagrams are a subset of the Unified Markup Language notation (UML, [OMG, 2009]). Sample experi-
ment descriptions are given as XML snippets that comply with the XML Schema.

It should however be noted that some of the concepts of SED-ML cannot be captured using XML Schema
alone. In these cases it is the specification that is considered the normative document.

13

2.1 Conventions used in this document

2.1.1 UML Classes

A SED-ML UML class (Figure 2.1) consists of a class name (ClassName) and a number of attributes
(attribute) each of a specific data type (type). The SED-ML UML specification does not make use of
UML operations.

Figure 2.1: SED-ML UML Class with class names and attributes

SED-ML class names always begin with upper case letters. If they are composed of different words, the
camel case style is used, as in e. g. DataGenerator.

2.1.2 UML Relationships

2.1.2.1 UML Relation Types

Figure 2.2: UML Class connectors

Links between classes specify the connection of objects with each other (Figure 2.2). The different relation
types used in the SED-ML specification include aggregation, composite aggregation, and generalisation.
The label on the line is called symbol (label) and describes the relation of the objects of both classes.

The association (Figure 2.3) indicates the existence of a connection between the objects of the partici-
pating classes. Often associations are directed to show how the label should be read (in which direction).
Associations can be uni-directional (one arrowhead), or bidirectional (zero or two arrowheads).

Figure 2.3: UML Association

The aggregation (Figure 2.4 on the following page, top) indicates that the objects of the participating
classes are connected in a way that one class (Whole) consists of several parts (Part). In an aggregation,
the parts may be independent of the whole. For example, a car (Whole) has several parts called wheel
(Part); however, the wheels can exist independently of the car while the car requires the wheels in order
to function.

The composite aggregation (Figure 2.4 on the next page, bottom) indicates that the objects of the
participating classes are connected in a way that one class (Whole) consists of several parts (Part). In
contrast to the aggregation, the subelements (Part) are dependent on the parent class (Whole). An
example is that a university (Whole) consists of a number of departments (Part) which have a so-called

14

Figure 2.4: UML Aggregation

“lifetime responsibility” with the university, e. g. if the university vanishes, the departments will vanish
with it [Bell, 2003].

The generalisation (Figure 2.5) allows to extend classes (BaseClass) by additional properties. The
derived class (DerivedClass) inherites all properties of the base class and defines additional ones. In the
given example, an instance of DerivedClass has two attributes attribute1 and attribute2.

Figure 2.5: UML Generalisation

2.1.2.2 UML multiplicity

UML multiplicity defines the number of objects in one class that can be related to one object in the other
class (also known as cardinality). Possible types of multiplicity include values (1), ranges (1..4), intervals
(1,3,9), or combinations of ranges and intervals. The standard notation for “many” is the asterix (*).

Multiplicity can be defined for both sides of a relationship between classes. The default relationship
is “many to many”. The example in Figure 2.6 expresses that a class is given by a professor, and a
professor might give one to many classes.

Figure 2.6: UML Multiplicity in an Aggregation

2.1.3 XML Schema language elements

The main building blocks of an XML Schema specification are:

• simple and complex types

15

• element specifications

• attribute specifications

XML Schema definitions create new types, declarations define new elements and attributes. The defini-
tion of new (simple and complex) types can be based on a number of already existing, prefedined types
(string, boolean, float). Simple types are restrictions or extensions of predefined types. Complex types
describe how attribues can be assigned to elements and how elements can contain further elements. The
current SED-ML XML Schema only makes use of complex type definitions. An example for a complex
type definition is given in listing 2.1: It shows the declaration of an element called computeChange that is

1 <xs:element name="computeChange">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs:extension base="SEDBase">
5 <xs:sequence>
6 <xs:element ref="listOfVariables" minOccurs="0" />
7 <xs:element ref="listOfParameters" minOccurs="0" />
8 <xs:element ref="math" />
9 </xs:sequence>
10 <xs:attribute name="target" use="required" type="xs:token" />
11 </xs:extension>
12 </xs:complexContent>
13 </xs:complexType>
14 </xs:element>

Listing 2.1: Complex Type definition of the SED-ML computeChange element

used in SED-ML to change mathematical expressions. The element is defined using an unnamed complex
type which is build of further elements called listOfVariables, listOfParameters, and math. Addi-
tionally, the element computeChange has an attribute target declared. Please note that the definition
of the elements inside the complex type are only referred to and will be found elsewhere in the schema.

The nesting of elements in the schema can be expressed using the xs:sequence (a sequence of elements),
xs:choice (an alternative of elements to choose from), or xs:all (a set of elements that can occur in
any order) concepts. The current SED-ML XML Schema only uses the sequence of elements.

2.1.3.1 Multiplicities

The standard multiplicity for each defined element is 1. Explicit multiplicity is to be defined using the
minOccurs and maxOccurs attributes inside the complex type definition, as shown in listing 2.2.

1 <xs:element name="dataGenerator">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs:extension base="SEDBase">
5 <xs:sequence>
6 <xs:element ref="listOfVariables" minOccurs="0" />
7 <xs:element ref="listOfParameters" minOccurs="0" />
8 <xs:element ref="math" />
9 </xs:sequence>
10 <xs:attributeGroup ref="idGroup" />
11 </xs:extension>
12 </xs:complexContent>
13 </xs:complexType>
14 </xs:element>

Listing 2.2: Multiplicity for complex types in XML Schema

In this example, the dataGenerator type is build of a sequence of three elements: The listOfVariables
element is not necessary for the definition of a valid dataGenerator XML structure (it may occur 0 times
or once). The same is true for the listOfParameters element (it may as well occur 0 times or once).
The math element, however, uses the implicit standard multiplicity – it must occur exactly 1 time in the
dataGenerator specification.

16

2.1.4 Type extensions

XML Schema offers mechanisms to restrict and extend previously defined complex types. Extensions
add element or attribute declarations to existing types, while restrictions restrict the types by adding
further characteristics and requirements (facets) to a type. An example for a type extension is given
in listing 2.3. The sedML element is an extension of the previously defined SEDBase type. It extends

1 <xs:element name="sedML">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs:extension base="SEDBase">
5 <xs:sequence>
6 <xs:element ref="listOfSimulations" minOccurs="0" />
7 <xs:element ref="listOfModels" minOccurs="0" />
8 <xs:element ref="listOfTasks" minOccurs="0" />
9 <xs:element ref="listOfDataGenerators" minOccurs="0" />
10 <xs:element ref="listOfOutputs" minOccurs="0" />
11 </xs:sequence>
12 <xs:attribute name="level" type="xs:decimal" use="required"
13 fixed="1" />
14 <xs:attribute name="version" type="xs:decimal" use="required"
15 fixed="1" />
16 </xs:extension>
17 </xs:complexContent>
18 </xs:complexType>
19 </xs:element>

Listing 2.3: Definition of the sedML type through extension of SEDBase in SED-ML

SEDBase by a sequence of five additional elements (listOfSimulations, listOfModels, listOfTasks,
listOfDataGenerators, and listOfOutputs) and a new attribute version.

17

2.2 Concepts used in SED-ML

2.2.1 MathML subset

The SED-ML specification allows for the encoding of pre-processing applied to the computational model,
as well as for the encoding of post processing applied to the raw simulation data before output. The
corresponding mathematical expressions are encoded using MathML 2.0 [Carlisle et al., 2001]. MathML
is an international standard for encoding mathematical expressions using XML. It is also used as a
representation of mathematical expressions in other formats, such as SBML and CellML, two of the
languages supported by SED-ML.

2.2.1.1 MathML operations

In order to make the SED-ML format easier to adopt, at the beginning we restrict the MathML subset
to the following operations:

• token: cn, ci, csymbol, sep

• general : apply, piecewise, piece, otherwise, lambda

• relational operators: eq, neq, gt, lt, geq, leq

• arithmetic operators: plus, minus, times, divide, power, root, abs, exp, ln, log, floor, ceiling,
factorial

• logical operators: and, or, xor, not

• qualifiers: degree, bvar, logbase

• trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,
arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth

• constants: true, false, notanumber, pi, infinity, exponentiale

• MathML annotations: semantics, annotation, annotation-xml

2.2.1.2 MathML Symbols

All the operations listed above only operate on singular values. However, as one of SED-ML’s aims is
to provide post processing on the results of simulation experiments, we need to enhance this basic set
of operations by some aggregate functions. Therefore a defined set of MathML symbols that represent
vector values are supported by SED-ML Level 1 Version 1. To simplify things for SED-ML L1V1 the
only symbols to be used are the identifiers of variables defined in the listOfVariables of DataGenerators.
These variables represent the data collected from the simulation experiment with the associated task.

2.2.1.3 MathML functions

The following aggregate functions are available for use in SED-ML Level 1 Version 1.

• min: Where the minimum of a variable represents the smallest value the simulation experiment
yielded (Listing 2.4).

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#min">
3 min
4 </csymbol>
5 <ci> variableId </ci>
6 </apply>

Listing 2.4: Example for the use of the MathML min function.

• max : Where the maximum of a variables represents the largest value the simulation experiment
yielded (listing 2.5).

• sum: All values of the variable returned by the simulation experiment are summed (listing 2.6).

• product : All values of the variable returned by the simulation experiment are multiplied (listing
2.7).

18

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#max">
3 max
4 </csymbol>
5 <ci> variableId </ci>
6 </apply>

Listing 2.5: Example for the use of the MathML max function.

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#sum">
3 sum
4 </csymbol>
5 <ci> variableId </ci>
6 </apply>

Listing 2.6: Example for the use of the MathML sum function.

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org//#product">
3 product
4 </csymbol>
5 <ci> variableId </ci>
6 </apply>

Listing 2.7: Example for the use of the MathML product function.

These represent the only exceptions. At this point SED-ML Level 1 Version 1 does not define a complete
algebra of vector values. For more information see the description of the DataGenerator class.

2.2.2 URI Scheme

URIs are needed at different points in SED-ML Level 1 Version 1: Firstly, they are the preferred mech-
anism to refer to model encodings. Secondly, they are used to specify the language of the referenced
model. Thirdly, they enable addressing implicit model variables. Finally, annotations of SED-ML ele-
ments should be provided with a standardised annotation scheme.

The use of a standardised URI Scheme ensures long-time availability of particular information that can
unambiguously be identified.

2.2.2.1 Model references

The preferred way for referencing a model from a SED-ML file is adopted from the MIRIAM URI Scheme.
MIRIAM enables identification of a data resource (in this case a model resource) by a predefined URN.
A data entry inside that resource is identified by an ID. That way each single model in a particular model
repository can be unambiguously referenced. To become part of MIRIAM resources, a model repository
must ensure permanent and consistent model references, that is stable IDs.

One model repository that is part of MIRIAM resources is the BioModels Database [Li et al., 2010].
Its data resource name in MIRIAM is urn:miriam:biomodels.db. To refer to a particular model, a
standardised identifier scheme is defined in MIRIAM Resources1. The ID entry maps to a particular
model in the model repository. That model is never deleted. A sample BioModels Database ID is
BIOMD0000000048. Together with the data resource name it becomes unambiguously identifiable by the
URN urn:miriam:biomodels.db:BIOMD0000000048 (in this case referring to the 1999 Kholodenko model
on EGFR signaling).

SED-ML recommends to follow the above scheme for model references, if possible. SED-ML does not
specify how to resolve the URNs. However, MIRIAM Resources offers web services to do so2. For the
above example of the urn:miriam:biomodels.db:BIOMD0000000048 model, the resolved URL may look
like:

• http://biomodels.caltech.edu/BIOMD0000000048 or

• http://www.ebi.ac.uk/biomodels-main/BIOMD0000000048
1http://www.ebi.ac.uk/miriam/
2http://www.ebi.ac.uk/miriam/

19

http://www.ebi.ac.uk/miriam/
http://www.ebi.ac.uk/miriam/

depending on the physical location of the resource chosen to resolve the URN.

An alternative means to obtain a model may be to provide a single resource containing necessary models
and a SED-ML file. Although a specification of such a resource is beyond the scope of this document,
one proposal – SED-ML archive format – is described in Appendix D. Further information on the source
attribute referencing the model location is provided in Section 2.4.1.2.

2.2.2.2 Language references

To specify the language a model is encoded in, a set of pre-defined SED-ML URNs can be used. The
structure of SED-ML language URNs is urn:sedml:language:name.version. SED-ML allows to specify
a model representation format very generally as being XML, if no standardised representation format has
been used to encode the model. On the other hand, one can be as specific as defining a model being in
a particular version of a language, as “SBML Level 2, Version 2, Revision 1”.

The list of URNs is available from http://sed-ml.org/. Further information on the language attribute
is provided in Section 2.4.1.1.

2.2.2.3 Implicit variables

Some variables used in an experiment are not explicitly defined in the model, but may be implicitly
contained in it. For example, to plot a variable’s behaviour over time, that variable is defined in an
SBML model, while time is not explicitly defined.

To overcome this issue and allow SED-ML to refer to such variables in a common way, the notion of
implicit variables is used. Those variables are called symbols in SED-ML. They are defined follow-
ing the idea of MIRIAM URNs and using the SED-ML URN scheme. The structure of the URNs is
urn:sedml:symbol:implicit variable. To refer from a SED-ML file to the definition of time, for example,
the URN is urn:sedml:symbol:time.

The list of predefined symbols is available from the SED-ML site on http://sed-ml.org/. From that
source, a mapping of SED-ML symbols on possibly existing concepts in the single languages supported
by SED-ML is provided.

2.2.2.4 Annotations

When annotating SED-ML elements with semantic annotations, the MIRIAM URI Scheme should be
used. In addition to providing the data type (e. g. PubMed) and the particular data entry inside that
data type (e. g. 10415827), the relation of the annotation to the annotated element should be described
using the standardised biomodels.net qualifier. The list of qualifiers, as well as further information about
their usage, is available from http://www.biomodels.net/qualifiers/.

2.2.3 XPath usage

XPath is a language for finding information in an XML document [Clarke and DeRose, 1999]. Within
Level 1 Version 1, XPath version 1 expressions are used to identify nodes and attributes within an XML
representation of a biological model in the following ways:

1. Within a Variable definition, where XPath identifies the model variable required for manipulation
in SED-ML.

2. Within a Change definition, where XPath is used to identify the target XML to which a change
should be applied.

For proper application, XPath expressions should contain prefixes that allow their resolution to the
correct XML namespace within an XML document. For example, the XPath expression referring to a
species X in an SBML model:

/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id=‘X’] 4 -CORRECT

is preferable to

/sbml/model/listOfSpecies/species[@id=‘X’] 8 -INCORRECT

which will only be interpretable by standard XML software tools if the SBML file declares no namespaces.

20

http://sed-ml.org/
http://sed-ml.org/
http://www.biomodels.net/qualifiers/

2.2.4 KiSAO

An important aspect of a simulation experiment is the simulation algorithm used to solve the system.
But the sole reference of a simulation algorithm through its name in form of a string is error prone and
ambiguous. Firstly, typing mistakes or language differences may make the identification of the intended
algorithm difficult. Secondly, many algorithms exist with more than one name, having synonyms or
various abbreviations that are commonly used.

These problems can be solved by using a controlled vocabulary to refer to a particular simulation algo-
rithm. One attempt to provide such a vocabulary is the Kinetic Simulation Algorithm Ontology (KiSAO,
[Courtot et al., 2011]). KiSAO is a community-driven approach of classifying and structuring simulation
approaches by model characteristics and numerical characteristics. Model characteristics include, for
instance, the type of variables used for the simulation (such as discrete or continuous variables) and the
spatial resolution (spatial or non-spatial descriptions). Numerical characteristics specify whether the sys-
tem’s behavior can be described as deterministic or stochastic, and whether the algorithms use fixed or
adaptive time steps. Related algorithms are grouped together, producing classes of algorithms. KiSAO
is available from BioPortal at http://purl.bioontology.org/ontology/KiSAO. The project homepage
is at http://www.biomodels.net/kisao/.

Although work is still at an early stage, the use of KiSAO is recommended when referring to a simulation
algorithm from a SED-ML description. However, the use of KiSAO for the moment is limited. One may
look up the algorithm that was used in the simulation experiment (through resolving the KiSAO ID)
and then try and use one algorithm that is as similar to the original one as possible. KiSAO will become
more supportive for SED-ML as soon as the ontology contains a wider range of relationships between
different algorithms, as well as extended descriptions of the algorithm characteristics.

2.2.5 SED-ML resources

Information on SED-ML can be found on http://sed-ml.org. The SED-ML XML Schema, the UML
schema and related implementations, libraries, validators and so on can be found on the SED-ML source-
forge project page http://sed-ml.svn.sourceforge.net/.

21

http://purl.bioontology.org/ontology/KiSAO
http://www.biomodels.net/kisao/
http://sed-ml.org
http://sed-ml.svn.sourceforge.net/

2.3 General attributes and classes

In this section we introduce attributes and concepts used repeatedly throughout the SED-ML specifica-
tion.

2.3.1 id

Most objects in SED-ML carry an id attribute. The id attribute, if it exists for an object, is always
required and identifies SED-ML constituents unambiguously. The data type for id is SId which is a
datatype derived from the basic XML type string, but with restrictions about the characters permitted
and the sequences in which those characters may appear. The definition is shown in Figure 2.7.

letter ::= ’a’..’z’,’A’..’Z’

digit ::= ’0’..’9’

idChar ::= letter | digit | ’ ’

SId ::= (letter | ’ ’) idChar*

Figure 2.7: The definition of the type SId

For a detailed description see also the SBML specification on the “Type SId” [Hucka et al., 2010, p. 11].

All ids have a global scope, i. e. the id must be unambiguous throughout a whole SED-ML document.
As such it identifies the constituent it is related to.

An example for a defined id is given in Listing 2.8. The defined model carries the id m00001. If the

1 <model id="m00001" language="urn:sedml:language:sbml" source="urn:miriam:biomodels.db:BIOMD0000000012">
2 [MODEL DEFINITION]
3 </model>

Listing 2.8: SED-ML identifier definition, e. g. for a model

model is referenced elsewhere in the SED-ML document, it is referred to by that id.

2.3.2 name

Besides an id, a SED-ML constituent may carry an optional name. However, names do not have iden-
tifying character; several SED-ML constituents may carry the same name. The purpose of the name
attribute is to keep a human-readable name of the constituent, e. g. for display to the user. In the XML
Schema representation, names are of the data type String.

Listing 2.9 extends the model definition in listing 2.8 by a model name.

1 <model id="m00001" name="Circadian oscillator" language="urn:sedml:language:sbml" source="
urn:miriam:biomodels.db:BIOMD0000000012">

2 [MODEL DEFINITION]
3 </model>

Listing 2.9: SED-ML name definition, e. g. for a model

2.3.3 SEDBase

SEDBase is the base class of SED-ML Level 1 Version 1. All other classes are derived from it. As such
it provides means to attach additional information on all other classes (Figure 2.8 on the next page).
That information can be specified by human readable Notes or custom Annotations.

Table 2.1 on the following page shows all attributes and sub-elements for the SEDBase element as defined
by the SED-ML Level 1 Version 1 XML Schema.

22

Figure 2.8: The SEDBase class

attribute description
metaIDo page 23

sub-elements description
noteso page 23
annotationo page 24

Table 2.1: Attributes and nested elements for SEDBase. xyo denotes optional elements and attributes.

2.3.3.1 metaid

The main purpose of the metaid attribute is to attach semantic annotations in form of the Annotation
class to SED-ML elements. The type of metaid is XML ID and as such the metaid attribute is globally
unique throughout the whole SED-ML document.

An example showing how to link a semantic annotation to a SED-ML object via the metaid is given in
the Annotation class description.

2.3.3.2 Notes

A note is considered a human-readable description of the element it is assigned to. It serves to display
information to the user. Instances of the Notes class may contain any valid XHTML [Pemberton et al.,
2002], ranging from short comments to whole HTML pages for display in a Web browser. The namespace
URL for XHTML content inside the Notes class is http://www.w3.org/1999/xhtml. It may either be
declared in the sedML XML element, or directly used in top level XHTML elements contained within the
notes element. For further options of how to set the namespace and detailed examples, please refer to
[Hucka et al., 2010, p. 14].

Table 2.2 shows all attributes and sub-elements for the Notes element as defined by the SED-ML Level 1
Version 1 XML Schema. Notes does not have any further sub-elements defined in SED-ML, nor

attribute description
xmlns:string page 25
“http://www.w3.org/1999/xhtml”

sub-elements
well-formed content permitted in XHTML

Table 2.2: Attributes and nested elements for Notes. xyo denotes optional elements and attributes.

attributes associated with it.

Listing 2.10 on the following page shows the use of the notes element in a SED-ML file as defined by
the SED-ML Level 1 Version 1 XML Schema. In this example, the namespace declaration is inside
the notes element and the note is related to the sedML root element of the SED-ML file. A note may,
however, occur inside any SED-ML XML element, except note itself and annotation.

23

http://www.w3.org/1999/xhtml

1 <sedML [..]>
2 <notes >
3 <p xmlns="http://www.w3.org/1999/xhtml">The enclosed simulation description shows the oscillating

behaviour of
4 the Repressilator model using deterministic and stochastic simulators.</p>
5 </notes>
6 </sedML>

Listing 2.10: The notes element

2.3.3.3 Annotation

An annotation is considered a computer-processible piece of information. Annotations may contain any
valid XML content. For further guidelines on how to use annotations, we would like to encourage the
reading of the corresponding section in the SBML specification [Hucka et al., 2010, pp. 14-16]. The style
of annotations in SED-ML is briefly described in Section 2.2.2.4 on page 20.

Table 2.3 shows all attributes and sub-elements for the Annotation element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
none

sub-elements description
none in the SED-ML namespace

Table 2.3: Attributes and nested elements for Annotation. xyo denotes optional elements and at-
tributes.

Listing 2.11 shows the use of the annotation element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. In that example, a SED-ML model element is annotated with a

1 <sedML>
2 [..]
3 <model id="model1" metaID="001" language="urn:sedml:language:cellml"
4 source="http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/

d6613d7e1051b3eff2bb1d3d419a445bb8c754ad/leloup_gonze_goldbeter_1999_a.cellml" >
5 <annotation>
6 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:bqmodel="http://biomodels.net/model-qualifiers/">
8 <rdf:Description rdf:about="#001">
9 <bqmodel:isDescribedBy>
10 <rdf:Bag>
11 <rdf:li rdf:resource="urn:miriam:pubmed:10415827"/>
12 </rdf:Bag>
13 </bqmodel:isDescribedBy>
14 </rdf:Description>
15 </rdf:RDF>
16 </annotation>
17 </model>
18 [..]
19 </sedML>

Listing 2.11: The annotation element

reference to the original publication. The model contains an annotation that uses the biomodels.net
model-qualifier isDescribedBy to link to the external resource urn:miriam:pubmed:10415827. In natural
language the annotation content could be interpreted as “The model is described by the published article
available from pubmed under ID 10643740 ”. The example annotation follows the proposed URI Scheme
suggested by the MIRIAM reference standard. The MIRIAM URN can be resolved to the PubMED
(http://pubmed.gov) publication with ID 10415827, namely the article “Alternating oscillations and
chaos in a model of two coupled biochemical oscillators driving successive phases of the cell cycle.”
published by Romond et al. in 1999.

24

http://pubmed.gov

2.3.4 SED-ML top level element

Each SED-ML Level 1 Version 1 document has a main class called SED-ML which defines the document’s
structure and content (Figure 2.9). It consists of several parts; the parts are all connected to the SED-ML
class through aggregation: the Model class (for model specification, see Section 2.4.1), the Simulation
class (for simulation setup specification, see Section 2.4.3), the Task class (for the linkage of models and
simulation setups, see Section 2.4.4), the DataGenerator class (for the definition of post-processing, see
Section 2.4.5), and the Output class (for the output specification, see Section 2.4.6). All of them are
shown in Figure 2.9 and will be explained in more detail in the relevant sections of this document.

Figure 2.9: The sub-classes of SED-ML

Table 2.4 on the next page shows all attributes and sub-elements for the SED-ML element as defined by
the SED-ML Level 1 Version 1 XML Schema.

A SED-ML document needs to have the SED-ML namespace defined through the mandatory xmlns
attribute. In addition, the SED-ML level and version attributes are mandatory.

The basic XML structure of a SED-ML file is shown in listing 2.12 on the following page. The root element
of each SED-ML XML file is the sedML element, encoding version and level of the file, and setting the
necessary namespaces. Nested inside the sedML element are the five lists serving as containers for the
encoded data (listOfModels for all models, listOfSimulations for all simulations, listOfTasks for all tasks,
listOfDataGenerators for all post-processing definitions, and listOfOutputs for all output definitions).

2.3.4.1 xmlns

The xmlns attribute declares the namespace for the SED-ML document. The pre-defined namespace for
SED-ML documents is http://sed-ml.org/.

25

http://sed-ml.org/

attribute description
metaIDo page 23
xmlns page 25
level page 26
version page 26

sub-elements description
noteso page 23
annotationo page 24
listOfModelso page 33
listOfSimulationso page 34
listOfTaskso page 34
listOfDataGeneratorso page 35
listOfOutputso page 35

Table 2.4: Attributes and nested elements for SED-ML. xyo denotes optional elements and attributes.

1 <?xml version="1.0" encoding="utf-8"?>
2 <sedML xmlns:math="http://www.w3.org/1998/Math/MathML"
3 xmlns="http://sed-ml.org/" level="1" version="1">
4 <listOfModels />
5 [MODEL REFERENCES AND APPLIED CHANGES]
6 <listOfSimulations />
7 [SIMULATION SETUPS]
8 <listOfTasks />
9 [MODELS LINKED TO SIMULATIONS]
10 <listOfDataGenerators />
11 [DEFINITION OF POST-PROCESSING]
12 <listOfOutputs />
13 [DEFINITION OF OUTPUT]
14 </sedML>

Listing 2.12: The SED-ML root element

In addition, SED-ML makes use of the MathML namespace http://www.w3.org/1998/Math/MathML to
enable the encoding of mathematical expressions in MathML 2.0. SED-ML uses a subset of MathML as
described in Section 2.2.1 on page 18.

SED-ML notes use the XHTML namespace http://www.w3.org/1999/xhtml. The Notes class is de-
scribed in Section 2.3.3.2 on page 23.

Additional external namespaces might be used in annotations.

2.3.4.2 level

The current SED-ML level is “level 1”. Major revisions containing substantial changes will lead to the
definition of forthcoming levels.

The level attribute is required and its value is a fixed decimal. For SED-ML Level 1 Version 1 the
value is set to 1, as shown in the example in Listing 2.12.

2.3.4.3 version

The current SED-ML version is “version 1”. Minor revisions containing corrections and refinements of
SED-ML elements will lead to the definition of forthcoming versions.

The version attribute is required and its value is a fixed decimal. For SED-ML Level 1 Version 1 the
value is set to 1, as shown in the example in Listing 2.12.

2.3.5 Reference relations

The reference concept is used to refer to a particular element inside the SED-ML document. It may
occur in five different ways in the SED-ML document:

1. as an association between two Models (modelReference),

2. as an association between a Variable and a Model (modelReference),

26

http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xhtml

3. as an association between a Variable and a Task (taskReference),

4. as an association between a Task and the associated Model (modelReference) or

5. as an association between a Task and the Simulation (simulationReference).

6. as an association between an Output and a DataGenerator (dataReference),

The definition of a Task object demands a reference to a particular Model object (modelReference, see
Section 2.3.5.1 on page 27); furthermore, the Task object must be associated with a particular Simulation
object (simulationReference, see Section 2.3.5.3 on page 28).

Depending on the use of the reference relation in connection with a Variable object, it may take different
roles:

a. The reference association might occur between a Variable object and a Model object, if the variable
is to define a Change. In that case the variable element contains a modelReference to refer to the
particular model that contains the variable used to define the change (see Section 2.3.5.1 on page
27).

b. If the reference is used as an association between a Variable object and a Task object inside the
dataGenerator class, then the variable element contains a taskReference to unambiguously refer
to an observable in a given task (see Section 2.3.5.2 on page 28).

Four different types of data references exist in SED-ML Level 1 Version 1. They are used depending on
the type of output for the simulation. A 2d plot has an xDataReference and a yDataReference assigned.
A 3D plot has in addition a zDataReference assigned. To define a report, each data column has a
dataReference assigned.

2.3.5.1 modelReference

The modelReference either represents a relation between two Model objects, a Variable object and a
Model object, or a relation between a Task object and a Model object.

The source attribute of a Model is allowed to reference either a URI or an SId to a second Model.
Constructs where a model A refers to a model B and B to A are invalid.

If pre-processing needs to be applied to a model before simulation, then the model update can be
specified by creating a Change object. In the particular case that a change must be calculated with a
mathematical function, variables need to be defined. To refer to an existing entity in a defined Model,
the modelReference is used.

The modelReference attribute of the variable element contains the id of a model that is defined in the
document. Listing 2.13 shows the use of the modelReference element in a SED-ML file as defined by
the SED-ML Level 1 Version 1 XML Schema. In the example, a change is applied on model m0001. In

1 <model id="m0001" [..]>
2 <listOfChanges>
3 <computeChange>
4 <listOfVariables>
5 <variable id="v1" modelReference="cellML" target="/cellml:model/cellml:component[@cmeta:id=’MP’]/

cellml:variable[@name=’vsP’]/@initial_value" />
6 [..]
7 </listOfVariables>
8 <listOfParameters [..] />
9 <math>
10 [CALCULATION OF CHANGE]
11 </math>
12 </computeChange>
13 </listOfChanges>
14 [..]
15 </model>

Listing 2.13: SED-ML modelReference attribute inside a variable definition of a computeChange
element

the computeChange element a list of variables is defined. One of those variable is v1 which is defined in

27

another model (cellML). The XPath expression given in the target attribute identifies the variable in
the model which carries the ID cellML.

The modelReference is also used to indicate that a Model object is used in a particular Task. Listing
2.14 shows how this can be done for a sample SED-ML document. The example defines two different

1 <listOfTasks>
2 <task id="t1" name="Baseline" modelReference="model1" simulationReference="simulation1" />
3 <task id="t2" name="Modified" modelReference="model2" simulationReference="simulation1" />
4 </listOfTasks>

Listing 2.14: SED-ML modelReference definition inside a task element

tasks; the first one applies the simulation settings of simulation1 on model1, the second one applies the
same simulation settings on model2.

2.3.5.2 taskReference

DataGenerator objects are created to apply post-processing to the simulation results before simulation
output.

For certain types of post-processing Variable objects need to be created. These link to a defined Task
from which the model that contains the variable of interest can be inferred. A taskReference association
is used to realise that link from a Variable object inside a DataGenerator to a Task object. Listing 2.15
gives an example. The example shows the definition of a variable v1 in a dataGenerator element. The

1 <listOfDataGenerators>
2 <dataGenerator id="tim3" name="tim mRNA (difference v1-v2+20)">
3 <listOfVariables>
4 <variable id="v1" taskReference="t1" [..] />
5 </listOfVariables>
6 <math [..]/>
7 </dataGenerator>
8 </listOfDataGenerators>

Listing 2.15: SED-ML taskReference definition inside a dataGenerator element

variable appears in the model that is used in task t1. The task definition of t1 might look as shown
in Listing 2.16. Task t1 references the model model1. Therefore we can conclude that the variable v1

1 <listOfTasks>
2 <task id="t1" name="task definition" modelReference="model1" simulationReference="simulation1" />
3 </listOfTasks>

Listing 2.16: Use of the reference relations in a task definition

defined in listing 2.15 targets an element of the model with ID model1. The targeting process itself will
be explained in section 2.3.6.1 on page 30.

2.3.5.3 simulationReference

The simulationReference is used to refer to a particular Simulation in a Task. Listing 2.14 shows the
reference to a defined simulation for a sample SED-ML document. In the example, both tasks t1 and
t2 use the simulation settings defined in simulation1 to run the experiment.

2.3.5.4 dataReference

The dataReference is used to refer to a particular DataGenerator instance from an Output instance.
Listing 2.17 shows the reference to a defined data set for a sample SED-ML document. In the example,
the output type is a 2D plot, which defines one curve with id c1. A curve must refer to two different
data generators which describe how to procure the data that is to be plotted on the x-axis and y-axis

28

1 <listOfOutputs>
2 <plot2D id="p1" [..] >
3 <curve id="c1" xDataReference="dg1" yDataReference="dg2" />
4 [..]
5 </plot>
6 </listOfOutputs>

Listing 2.17: Example for the use of data references in a curve definition

respectively.

2.3.6 Variable

Variables are references to already existing entities, either existing in one of the defined models or
externally defined symbols (Figure 2.10). If the variable is defined through a reference to a model

Figure 2.10: The Variable class

constituent, such as an SBML species, then the reference is specified using the target attribute. If the
variable is defined through a reference to an external entity, then the symbol attribute is used. It holds
a SED-ML URI. A variable is always placed inside a listOfVariables. Symbol and target must not be
used together in a single instance of Variable.

Table 2.5 shows all attributes and sub-elements for the Variable element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22
target page 30
symbol page 31
taskReference page 28
modelReference page 27

sub-elements description
noteso page 23
annotationo page 24

Table 2.5: Attributes and nested elements for Variable. xyo denotes optional elements and attributes.

A variable element must contain a taskReference if it occurs inside a listOfVariables inside a dataGen-
erator element. A variable element must contain a modelReference if it occurs inside a listOfVariables
inside a computeChange element.

Listing 2.18 on the following page shows the use of the variable element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema.

Listing 2.18 defines a variable v1 (line 7) to compute a change on a model constituent (referenced by
the target attribute on computeChange in line 5). The value of v1 corresponds with the value of the
targeted model constituent references by the target attribute in line 8. The second variable, v2 (line
21), is used inside a dataGenerator. As the variable is time as used in task1, the symbol attribute is
used to refer to the SED-ML URI for time (line 21).

29

1 <sedML>
2 <listOfModels>
3 <model [..]>
4 <listOfChanges>
5 <computeChange target="TARGET ELEMENT OR ATTRIBUTE">
6 <listOfVariables>
7 <variable id="v1" name="maximum velocity"
8 target="XPath TO A MODEL ELEMENT OR ATTRIBUTE IN ANY SPECIFIED MODEL" />
9 [FURTHER VARIABLE DEFINITIONS]
10 </listOfVariables>
11 [..]
12 </computeChange>
13 </listOfChanges>
14 [..]
15 </model>
16 [..]
17 </listOfModels>
18 <listOfDataGenerators>
19 <dataGenerator [..]>
20 <listOfVariables>
21 <variable id="v2" name="time" taskReference="task1" symbol="urn:sedml:symbol:time" />
22 [FURTHER VARIABLE DEFINITIONS]
23 </listOfVariables>
24 </dataGenerator>
25 </listOfDataGenerators>
26 [..]
27 </sedML>

Listing 2.18: SED-ML variable definitions inside the computeChange element and inside the
dataGenerator element

2.3.6.1 target

An instance of Variable refers to a model constituent inside a particular model through an XPath ex-
pression stored in the required target attribute. XPath unambiguously identifies an element or attribute
in an XML file.

Listing 2.19 shows the use of the target element in a SED-ML file as defined by the SED-ML Level 1
Version 1 XML Schema. It should be noted that the identifier and names inside the SED-ML document

1 <listOfVariables>
2 <variable id="v1" name="TetR protein" taskReference="task1"
3 target="/sbml:sbml/sbml:listOfSpecies/sbml:species[@id=’PY’]" />
4 </listOfVariables>

Listing 2.19: SED-ML target definition

do not have to comply with the identifiers and names that the model and its constituents carry in the
model definition. In listing 2.19, the variable with ID v1 is defined. It is described as the TetR protein.
The reference points to a species in the referenced SBML model. The particular species can be identified
through its ID in the SBML model, namely PY. However, SED-ML does not forbid to use identical
identifiers and names as in the referenced models neither. The following Listing 2.20 is another valid
example for the specification of a variable, but uses the sane naming in the variable definition as in the
original model (as opposed to Listing 2.19):

1 <listOfVariables>
2 <variable id="PY" name="TetR protein" taskReference="task1"
3 target="/sbml:sbml/sbml:listOfSpecies/sbml:species[@id=’PY’]" />
4 </listOfVariables>

Listing 2.20: SED-ML variable definition using the original model identifier and name in SED-ML

The XPath expression used in the target attribute unambiguously leads to the particular place in the
XML SBML model – the species is to be found in the sbml element, and there inside the listOfSpecies
(Listing 2.21 on the following page).

30

1 <sbml [..]>
2 <listOfSpecies]
3 <species metaid="PY" id="PY" name="TetR protein" [..]>
4 [..]
5 </species>
6 </listOfSpecies>
7 [..]
8 </sbml>

Listing 2.21: Species definition in the referenced model (extracted from urn:miriam:biomodels.db:
BIOMD0000000012)

2.3.6.2 symbol

Symbols are predefined, implicit variables that can be called in a SED-ML file by referring to the defined
URNs representing that variable’s concept. The notion of implicit variables is explained in Section 2.2.2.3
on page 20.

Listing 2.22 shows the use of the symbol element in a SED-ML file as defined by the SED-ML Level 1
Version 1 XML Schema. The example encodes a computed change of model m001. To specify that
change, a symbol is defined (i. e. the SED-ML symbol for time is assigned to the variable t1). How to
compute the change itself is explained in Section 2.4.2.6.

1 <listOfVariables>
2 <variable id="t1" name="time" taskReference="task1"
3 symbol="urn:sedml:symbol:time" />
4 </listOfVariables>

Listing 2.22: SED-ML symbol definition

2.3.7 Parameter

The SED-ML Parameter class creates instances with a constant value (Figure 2.11). SED-ML uses

Figure 2.11: The Parameter class

parameters in two ways: Firstly, parameters may be defined in the ComputeChange class for describing
the mathematical computation of a change of a model’s observable. Secondly, parameters may be part
of a DataGenerator specification. In both cases the parameter definitions are local to the particular class
defining them.

Table 2.6 on the next page shows all attributes and sub-elements for the parameter element as defined
by the SED-ML Level 1 Version 1 XML Schema.

A parameter can unambiguously be identified through its given id. It may additionally carry an optional
name. Each parameter has one associated value.

Listing 2.23 on the following page shows the use of the parameter element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema. The listing shows the definition of a parameter p1
with the value="40" assigned.

2.3.7.1 value

Each parameter has exactly one fixed value. The value attribute of XML data type Double is required
for each parameter element.

31

urn:miriam:biomodels.db:BIOMD0000000012
urn:miriam:biomodels.db:BIOMD0000000012

attribute description
metaIDo page 23
id page 22
nameo page 22
value page 31

sub-elements description
noteso page 23
annotationo page 24

Table 2.6: Attributes and nested elements for parameter. xyo denotes optional elements and at-
tributes.

1 <listOfParameters>
2 <parameter id="p1" name="KM" value="40" />
3 </listOfParameters>

Listing 2.23: The definition of a parameter in SED-ML

2.3.8 ListOf* containers

SED-ML listOf* elements serve as containers for a collection of objects of the same type. For example,
the listOfModels contains all Model objects of a SED-ML document. Lists do not carry any further
semantics nor do they add additional attributes to the language. They might, however, be annotated
with Notes and Annotations as they are derived from SBase. All listOf* elements are optional in a
SED-ML document.

2.3.8.1 listOfVariables: The variable definition container

SED-ML uses the variable concept to refer to existing entities inside a model. The container for all
variables is listOfVariables (Figure 2.12). It includes all variables that need to be defined to either
describe a change in the model by means of mathematical equations (ComputeChange) or to set up a
dataGenerator.

Figure 2.12: The SED-ML listOfVariables container

Listing 2.24 on the following page shows the use of the listOfVariables element in a SED-ML file as
defined by the SED-ML Level 1 Version 1 XML Schema. The listOfVariables is optional and may
contain zero to many variables.

32

1 <listOfVariables>
2 <variable id="v1" name="maximum velocity" taskReference="task1"
3 target="/cellml:model/cellml:component[@cmeta:id=’MP’]/cellml:variable[@name=’vsP’]/@initial_value"

/>
4 <variable id="v2" taskReference="task2" symbol="urn:sedml:symbol:time" />
5 </listOfVariables>

Listing 2.24: SED-ML listOfVariables element

2.3.8.2 listOfParameters: The parameter definition container

All parameters needed throughout the simulation experiment, either to compute a change on a model
prior to simulation (ComputeChange) or to set up a DataGenerator, are defined inside a listOfParameters
(Figure 2.13).

Figure 2.13: The SED-ML listOfParameters container

Listing 2.25 shows the use of the listOfParameters element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. The element is optional and may contain zero to many parameters.

1 <listOfParameters>
2 <parameter id="p1" value="1" />
3 <parameter id="p2" name="Kadp_2" value="0.23" />
4 </listOfParameters>

Listing 2.25: SED-ML listOfParameters element

2.3.8.3 listOfModels: The model description container

In order to specify a simulation experiment, the participating models have to be defined. SED-ML uses
the listOfModels container for all necessary models (Figure 2.14 on the next page).

Listing 2.26 on the following page shows the use of the listOfModels element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema. The listOfModels is optional and may contain zero
to many models. However, if the Level 1 Version 1 document contains one or more Task elements, at
least one Model element must be defined to which the Task element refers (Section 2.3.5.1 on page 27).

2.3.8.4 listOfChanges: The change definition container

The listOfChanges contains the defined changes to be applied to a particular model (Figure 2.15 on the
next page). It always occurs as an optional subelement of the model element.

Listing 2.27 on the following page shows the use of the listOfChanges element in a SED-ML file as
defined by the SED-ML Level 1 Version 1 XML Schema. The listOfChanges is nested inside the model
element.

33

Figure 2.14: The SED-ML listOfModels container

1 <listOfModels>
2 <model id="m0001" language="urn:sedml:language:sbml"
3 source="urn:miriam:biomodels.db:BIOMD0000000012" />
4 <model id="m0002" language="urn:sedml:language:cellml"
5 source="http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/

d6613d7e1051b3eff2bb1d3d419a445bb8c754ad/leloup_gonze_goldbeter_1999_a.cellml" />
6 </listOfModels>

Listing 2.26: SED-ML listOfModels element

Figure 2.15: The SED-ML listOfChanges container

1 <model id="m0001" [..]>
2 <listOfChanges>
3 [CHANGE DEFINITION]
4 </listOfChanges>
5 </model>

Listing 2.27: The SED-ML listOfChanges element, defining a change on a model

2.3.8.5 listOfSimulations: The simulation description container

The listOfSimulations element is the container for simulation descriptions (Figure 2.16 on the next page).

Listing 2.28 shows the use of the listOfSimulation element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. For all SED-ML Level 1 Version 1 documents, the encoded simulation

1 <listOfSimulations>
2 <simulation id="s1" [..]>
3 [UNIFORM TIMECOURSE DEFINITION]
4 </simulation>
5 <simulation id="s2" [..]>
6 [UNIFORM TIMECOURSE DEFINITION]
7 </simulation>
8 </listOfSimulations>

Listing 2.28: The SED-ML listOfSimulations element, containing two simulation setups

definitions are instances of the Uniform Timecourse class. The listOfSimulations is optional and may
contain zero to many simulations. However, if the Level 1 Version 1 document contains one or more
Task elements, at least one Simulation element must be defined to which the Task element refers - see
section 2.3.5.3 on page 28.

2.3.8.6 listOfTasks: The task specification container

The listOfTasks element contains the defined tasks for the simulation experiment (Figure 2.17 on the
next page).

Listing 2.29 on the following page shows the use of the listOfTasks element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema. The listOfTasks is optional and may contain zero
to many tasks. However, if the Level 1 Version 1 document contains a DataGenerator element with at

34

Figure 2.16: The listOfSimulations container

Figure 2.17: The SED-ML listOfTasks container

1 <listOfTasks>
2 <task id="t1" name="simulating v1" modelReference="m1" simulationReference="s1">
3 [FURTHER TASK DEFINITIONS]
4 </listOfTasks>

Listing 2.29: The SED-ML listOfTasks element, defining one task

least one Variable element, at least one Task must be defined to which variable(s) in the DataGenerator
element refers - see section 2.3.5.2 on page 28.

2.3.8.7 listOfDataGenerators: The post-processing container

In SED-ML, all variable- and parameter values that shall be used in the Output class need to be defined
as a dataGenerator beforehand. The container for those data generators is the listOfDataGenerators
(Figure 2.18 on the next page).

Listing 2.30 shows the use of the listOfDataGenerators element in a SED-ML file as defined by the
SED-ML Level 1 Version 1 XML Schema.

1 <listOfDatGenerators>
2 <dataGenerator id="d1" name="time">
3 [DATA GENERATOR DEFINITION FOLLOWING]
4 </dataGenerator>
5 <dataGenerator id="LaCI" name="LaCI repressor">
6 [DATA GENERATOR DEFINITION FOLLOWING]
7 </dataGenerator>
8 </listOfDataGenerators>

Listing 2.30: The listOfDataGenerators element, defining two data generators time and LaCI
repressor

The listOfDataGenerators is optional and in general may contain zero to many DataGenerators. How-
ever, if the Level 1 Version 1 document contains an Output element, at least one DataGenerator must
be defined to which the Output element refers - see section 2.3.5.4 on page 28.

2.3.8.8 listOfOutputs: The output specification container

The listOfOutputs container holds the output specifications for a simulation experiment.

The output can be defined as either a report, a plot2D or as a plot3D.

35

Figure 2.18: The SED-ML listOfDataGenerators container

Figure 2.19: The SED-ML listOfOutputs container

Listing 2.31 shows the use of the listOfOutputs element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. The listOfOutputs is optional and may contain zero to many outputs.

1 <listOfOutputs>
2 <report id="report1">
3 [REPORT DEFINITION FOLLOWING]
4 </report>
5 <plot2D id="plot1">
6 [2D PLOT DEFINITION FOLLOWING]
7 </plot2D>
8 </listOfOutputs>

Listing 2.31: The listOfOutput element

36

2.4 SED-ML Components

In this section we describe the major components of SED-ML. We use the UML notation presented in
section 2.1.1, and we show the use of SED-ML with XML examples. In addition, we provide a detailed
BNMP diagram with explanation of the SED-ML workflow in Appendix 1.2 and an XML Schema in
Appendix B.

2.4.1 Model

The Model class defines the models to be used in the simulation experiment (Figure 2.20).

Figure 2.20: The SED-ML Model class

Each instance of the Model class has an unambiguous and mandatory id. An additional, optional name
may be given to the model.

The language may be specified, defining the format the model is encoded in, if such a format exists.
Example formats are SBML or CellML.

The Model class refers to the particular model of interest through the source attribute. The restrictions
on the model reference are

• The model must be encoded in an XML format.

• To refer to the model encoding language, a reference to a valid definition of that XML format must
be given (language attribute).

• To refer to a particular model in an external resource, an unambiguous reference must be given
(source attribute).

A model might need to undergo preprocessing before simulation. Those pre-processings are specified in
the SED-ML Change class.

Table 2.7 shows all attributes and sub-elements for the model element as defined by the SED-ML Level 1
Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22
languageo page 38
source page 38

sub-elements description
noteso page 23
annotationo page 24
changeo page 39

Table 2.7: Attributes and nested elements for model. xyo denotes optional elements and attributes.

Listing 2.32 on the following page shows the use of the model element in a SED-ML file as defined by
the SED-ML Level 1 Version 1 XML Schema.

The above listOfModels contains three models: The first model m0001 is the Repressilator model
taken from BioModels Database. The original model is available from urn:miriam:biomodels.db:

37

urn:miriam:biomodels.db:BIOMD0000000012
urn:miriam:biomodels.db:BIOMD0000000012

1 <listOfModels>
2 <model id="m0001" language="urn:sedml:language:sbml"
3 source="urn:miriam:biomodels.db:BIOMD0000000012">
4 <listOfChanges>
5 <change>
6 [MODEL PRE-PROCESSING]
7 </change>
8 </listOfChanges>
9 </model>
10 <model id="m0002" language="urn:sedml:language:sbml" source="m0001">
11 <listOfChanges>
12 [MODEL PRE-PROCESSING]
13 </listOfChange>
14 </model>
15 <model id="m0003" language="urn:sedml:language:cellml" source="http://models.cellml.org/workspace/

leloup_gonze_goldbeter_1999/@@rawfile/d6613d7e1051b3eff2bb1d3d419a445bb8c754ad/
leloup_gonze_goldbeter_1999_a.cellml">

16 [MODEL PRE-PROCESSING]
17 </model>
18 </listOfModels>

Listing 2.32: SED-ML model element

BIOMD0000000012. For the SED-ML simulation, the model might undergo preprocessing, described in
the change element (lines 5-7). Based on the description of the first model m0001, the second model is
built. It refers to the model m001 in the source attribute, that is the modified version of the Repressilator
model. m0002 might then have even further changes applied to it on top of the changes defined in the
pre-processing of m0001. The third model in the code example above (lines 13-15) is a different model
in CellML representation. m0003 is the model available from the given URL in the source attribute.
Again, it might have additional pre-processing applied to it before used in the simulation.

2.4.1.1 language

The evaluation of a SED-ML document is required in order for software to decide whether or not it can be
used for a particular simulation environment. One crucial criterion is the particular model representation
language used to encode the model. A simulation software usually only supports a small subset of the
representation formats available to model biological systems computationally.

To help software decide whether or not it supports a SED-ML description file, the information on
the model encoding for each referenced model can be provided through the language attribute, as the
description of a language name and version through an unrestricted String is error-prone. A prerequisite
for a language to be fully supported by SED-ML is that a formalised language definition, e. g. an XML
Schema, is provided online. SED-ML also defines a set of standard URIs to refer to particular language
definitions. The list of URNs for languages so far associated with SED-ML is available from the SED-ML
web site on http://sed-ml.org/ (Section 2.2.2.2 on page 20). To specify language and version, following
the idea of MIRIAM URNs, the SED-ML URN scheme urn:sedml:language:language name is used. A
model’s language being “SBML Level 2 Version 2” can be referred to, for example, through the URN
urn:sedml:language:sbml.level-2.version-2.

The language attribute is optional in the XML representation of a SED-ML file. If it is not explicitly
defined in the SED-ML file, the default value for the language attribute is urn:sedml:language:xml,
referring to any XML based model representation.

However, the use of the language attribute is strongly encouraged for two reasons. Firstly, it helps a
user decide whether or not he is able to run the simulation, that is to parse the model referenced in
the SED-ML file. Secondly, the language attribute is also needed to decide how to handle the implicit
variables in the Variable class, as the interpretation of implicit variables depends on the language of the
representation format. The concept of implicit variables has been introduced in Section 2.2.2.3 on page
20.

2.4.1.2 source

To make a model available for the execution of a SED-ML file, the model source must be specified
through either a URI or a reference to an SId of an existing Model.

The URI should preferably point to a public, consistent location that provides the model description file
and follows the proposed URI Scheme. References to curated, open model bases are recommended, such

38

urn:miriam:biomodels.db:BIOMD0000000012
urn:miriam:biomodels.db:BIOMD0000000012
http://sed-ml.org/

as the BioModels Database. However, any resource registered with MIRIAM resources3 can easily be
referenced. Even without a MIRIAM URN, SED-ML can be used (Section 2.2.2.1 on page 19).

An example for the definition of a model, and using the URI scheme is given in Listing 2.33. The

1 <model id="m1" name="repressilator" language="urn:sedml:language:sbml"
2 source="urn:miriam:biomodels.db:BIOMD0000000012">
3 <listOfChanges>
4 [MODEL PRE-PROCESSING]
5 </listOfChanges>
6 </model>

Listing 2.33: The SED-ML source element, using the URI scheme

example defines one model m1. urn:miriam:biomodels.db:BIOMD0000000012 defines the source of the
model code. The MIRIAM URN can be resolved into the SBML model stored in BioModels Database
under ID BIOMD0000000012 using the MIRIAM web service. The resulting URL is http://www.ebi.ac.
uk/biomodels-main/BIOMD0000000012.

An example for the definition of a model and using a URL is given in Listing 2.34. In the example one

1 <model id="m1" name="repressilator" language="urn:sedml:language:cellml"
2 source="http://models.cellml.org/exposure/bba4e39f2c7ba8af51fd045463e7bdd3/aguda_b_1999.cellml">
3 <listOfChanges />
4 </model>

Listing 2.34: The SED-ML source element, using a URL

model is defined. The language of the model is CellML. As the CellML model repository currently does
not provide a MIRIAM URI for model reference, the URL pointing to the model code is used to refer to
the model. The URL is given in the source attribute.

2.4.2 Change

SED-ML not only allows to use the sole model for simulation, but also enables the description of changes
to be made on the model before simulation (Figure 2.21 on the next page). Changes can be of three
distinct types:

1. Changes on attributes of the model’s XML representation (ChangeAttribute)

2. Changes on any XML snippet of the model’s XML representation (AddXML, ChangeXML, Re-
moveXML)

3. Changes based on mathematical calculations (ComputeChange)

The Change class is abstract and serves as the container for different types of changes. Therefore, a
SED-ML document will only contain the derived classes, i. e. ChangeAttribute, AddXML, ChangeXML,
RemoveXML, or ComputeChange.

Table 2.8 on the following page shows all attributes and sub-elements for the change element as defined
by the SED-ML Level 1 Version 1 XML Schema.

Each Change has a target attribute that holds a valid XPath expression pointing to the XML element
or XML attribute that is to undergo the defined changes.

2.4.2.1 NewXML

The newXML element provides a piece of XML code (Figure 2.21 on the next page). NewXML must hold a
valid piece of XML which after insertion into the original model must lead to a valid model file, according
to the model language specification (as given by the language attribute).

3http://www.ebi.ac.uk/miriam/main/

39

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000012
http://www.ebi.ac.uk/miriam/main/

Figure 2.21: The SED-ML Change class

attribute description
metaido page 23
id page 22
nameo page 22
target page 30

sub-elements description
noteso page 23
annotationo page 24
addXMLo page 41
changeXMLo page 41
removeXMLo page 41
changeAttributeo page 43
computeChangeo page 44

Table 2.8: Attributes and nested elements for change. xyo denotes optional elements and attributes.

Table 2.9 shows all attributes and sub-elements for the newXML element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
none

sub-elements description
anyXML

Table 2.9: Attributes and nested elements for newXML. xyo denotes optional elements and attributes.

The newXML element is used at two different places inside SED-ML Level 1 Version 1:

1. If it is used as a sub-element of the addXML element, then the XML it contains it is to be inserted
as a child of the XML element addressed by the XPath.

2. If it is used as a sub-element of the changeXML element, then the XML it contains is to replace
the XML element addressed by the XPath.

Examples are given in the relevant change class definitions.

40

2.4.2.2 AddXML

The AddXML class specifies a snippet of XML that is to be added as a child of the specified XPath
target attribute (Figure 2.22). The new piece of XML code is provided by the NewXML class.

Figure 2.22: The SED-ML AddXML class

Table 2.10 shows all attributes and sub-elements for the addXml element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22
target page 30

sub-elements description
noteso page 23
annotationo page 24
newXML page 39

Table 2.10: Attributes and nested elements for addXML. xyo denotes optional elements and attributes.

An example for a change that adds an additional parameter to a model is given in listing 2.35.

The code of the model is changed so that a parameter with ID V mT is added to its list of parameters.
The newXML element adds an additional XML element to the original model. The element’s name is
parameter and it is added to the existing parent element listOfParameters that is addressed by the
XPath expression in the target attribute.

2.4.2.3 ChangeXML

The ChangeXML class defines changes of any XML element in the model that can be addressed by a
valid XPath expression (Figure 2.23 on the next page). The XPath is specified in the required target
attribute (Section 2.3.6.1 on page page 30). The change of XML is specified in the NewXML class.

Table 2.11 on the following page shows all attributes and sub-elements for the changeXml element as
defined by the SED-ML Level 1 Version 1 XML Schema.

An example for a change that adds an additional parameter to a model is given in listing 2.36. The
code of the model is changed in the way that its parameter with ID V mT is substituted by two other
parameters V mT 1 and V mT 2. The target attribute defines that the parameter with ID V mT is to be
changed. The newXML element then specifies the XML that is to be exchanged for that parameter.

2.4.2.4 RemoveXML

The RemoveXML class can be used to delete the XML element of the model that is addressed by the
XPath expression (Figure 2.24 on page 43).

41

1 <model language="urn:sedml:language:sbml" [..]>
2 <listOfChanges>
3 <addXML target="/sbml:sbml/sbml:model/sbml:listOfParameters" >
4 <newXML>
5 <parameter metaid="metaid_0000010" id="V_mT" value="0.7" />
6 </newXML>
7 </addXML>
8 </listOfChanges>
9 </model>

Listing 2.35: The addXML element with its newXML sub-element

Figure 2.23: The ChangeXML class

attribute description
metaido page 23
id page 22
nameo page 22
target page 30

sub-elements description
noteso page 23
annotationo page 24
newXML page 39

Table 2.11: Attributes and nested elements for changeXML. xyo denotes optional elements and
attributes.

1 <model [..]>
2 <listOfChanges>
3 <changeXML target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’V_mT’]" >
4 <newXML>
5 <parameter metaid="metaid_0000010" id="V_mT_1" value="0.7" />
6 <parameter metaid="metaid_0000050" id="V_mT_2" value="4.6"> />
7 </newXML>
8 </changeXML>
9 </listOfChanges>
10 </model>

Listing 2.36: The changeXML element

The XPath is specified in the required target attribute.

Table 2.12 on the following page shows all attributes and sub-elements for the removeXml element as
defined by the SED-ML Level 1 Version 1 XML Schema.

An example for the removal of an XML element from a model is given in Listing 2.37.

1 <model [..]>
2 <listOfChanges>
3 <removeXML target="/sbml:sbml/sbml:model/sbml:listOfReactions/sbml:reaction[@id=’J1’]" />
4 </listOfChanges>
5 </model>

Listing 2.37: The removeXML element

42

Figure 2.24: The RemoveXML class

attribute description
metaido page 23
id page 22
nameo page 22
target page 30

sub-elements description
noteso page 23
annotationo page 24

Table 2.12: Attributes and nested elements for removeXML. xyo denotes optional elements and
attributes.

The code of the model is changed by deleting the reaction with ID V mT from the model’s list of reactions.

2.4.2.5 ChangeAttribute

The ChangeAttribute class allows to define updates on the XML attribute values of the corresponding
model (Figure 2.25).

Figure 2.25: The ChangeAttribute class

The ChangeXML class covers the possibilities provided by the ChangeAttribute class. That is, everything
that can be expressed by a ChangeAttribute construct can also be expressed by a ChangeXML. However,
both concepts exist to allow for being very specific in defining changes. It is recommended to use the
ChangeAttribute for any changes of an XML attribute’s value, and to use the more general ChangeXML
for all other cases.

ChangeAttribute requires to specify the target of change, i. e. the location of the addressed XML at-
tribute, and also the new value of that attribute.

Table 2.13 shows all attributes and sub-elements for the changeAttribute element as defined by the
SED-ML Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22
target page 30
newValue page 44

sub-elements description
noteso page 23
annotationo page 24

Table 2.13: Attributes and nested elements for ChangeAttribute. xyo denotes optional elements and
attributes.

43

2.4.2.5.1 newValue

The mandatory newValue attribute assignes a new value to the targeted XML attribute.

The example in Listing 2.38 shows the update of the initial concentration of two parameters inside an
SBML model.

1 <model id="model1" name="Circadian Chaos" language="urn:sedml:language:sbml"
2 source="urn:miriam:biomodels.db:BIOMD0000000021">
3 <listOfChanges>
4 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’V_mT’]/@value"

newValue="0.28"/>
5 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’V_dT’]/@value"

newValue="4.8"/>
6 </listOfChanges>
7 </model>

Listing 2.38: The changeAttribute element and its newValue attribute

2.4.2.6 ComputeChange

The ComputeChange class permits to change, prior to the experiment, the value of any element or
attribute of a model addressable by an XPath expression, based on a calculation (Figure 2.26). The

Figure 2.26: The ComputeChange class

changes are described by mathematical expressions using a subset of MathML (see section 2.2.1 on
page 18). The computation can use the value of variables from any model defined in the simulation
experiment. Those variables need to be defined, and can then be addressed by their ID. A variable used
in a ComputeChange must carry a modelReference attribute (page 27) but no taskReference attribute
(page 28). To carry out the calculation it may be necessary to introduce additional parameters, that
are not defined in any of the model used by the experiment. This is done through the parameter class,
thereafter refered to by their ID. Finally, the change itself is specified using an instance of the Math
class.

Table 2.14 on the following page shows all attributes and sub-elements for the computeChange element
as defined by the SED-ML Level 1 Version 1 XML Schema.

2.4.2.6.1 Math

The Math element encodes mathematical functions. If used as an element of the ComputeChange class,
it computes the change of the element or attribute addressed by the target attribute. Level 1 Version 1
supports the subset of MathML 2.0 shown in section 2.2.1.

Listing 2.39 on the next page shows the use of the computeChange element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema.

The example in listing 2.39 computes a change of the variable sensor of the model model2. To do so, it
uses the value of the variable regulator coming from model model1. In addition, the calculation used
two additional parameters, the cooperativity n, and the sensitivity K. The mathematical expression in

44

attribute description
metaido page 23
id page 22
nameo page 22
target page 30

sub-elements description
noteso page 23
annotationo page 24
listOfVariableso page 32
listOfParameterso page 33
math page 44

Table 2.14: Attributes and nested elements for computeChange. xyo denotes optional elements and
attributes.

1 <model [..]>
2 <computeChange target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’sensor ’]">
3 <listOfVariables>
4 <variable modelReference="model1" id="R" name="regulator"
5 target="/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id=’regulator ’]" />
6 <variable modelReference="model2" id="S" name="sensor"
7 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’sensor ’]" />
8 <listOfVariables/>
9 <listOfParameters>
10 <parameter id="n" name="cooperativity" value="2">
11 <parameter id="K" name="sensitivity" value="1e-6">
12 <listOfParameters/>
13 <math>
14 <apply>
15 <times />
16 <ci>S</ci>
17 <apply>
18 <divide />
19 <apply>
20 <power />
21 <ci>R</ci>
22 <ci>n</ci>
23 </apply>
24 <apply>
25 <plus />
26 <apply>
27 <power />
28 <ci>K</ci>
29 <ci>n</ci>
30 </apply>
31 <apply>
32 <power />
33 <ci>R</ci>
34 <ci>n</ci>
35 </apply>
36 </apply>
37 </apply>
38 </math>
39 </computeChange>
40 </listOfChanges>
41 </model>

Listing 2.39: The computeChange element

the mathML then computes the new initial value of sensor using the equation:

S = S × Rn

Kn+Rn .

2.4.3 Simulation

A simulation is the execution of some defined algorithm(s). Simulations are described differently depend-
ing on the type of simulation experiment to be performed (Figure 2.27 on the following page). Simulation
is an abstract class and serves as the container for the different types of simulation experiments. SED-
ML Level 1 Version 1 offers the predefined simulation class UniformTimeCourse. Further simulation
classes are planned for future versions of SED-ML, including simulation classes for bifurcation analysis
and parameter scans. Simulation algorithms used for the execution of a simulation setup are defined in
the Algorithm class.

45

Figure 2.27: The SED-ML Simulation class

Table 2.15 shows all attributes and sub-elements for the simulation element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22

sub-elements description
noteso page 23
annotationo page 24
algorithm page 48

Table 2.15: Attributes and nested elements for simulation. xyo denotes optional elements and at-
tributes.

Listing 2.40 shows the use of the simulation element in a SED-ML file as defined by the SED-ML Level 1
Version 1 XML Schema. Two timcourses with uniform range are defined.

1 <listOfSimulations>
2 <uniformTimeCourse [..]>
3 [SIMULATION SPECIFICATION]
4 </uniformTimeCourse>
5 <uniformTimeCourse [..]>
6 [SIMULATION SPECIFICATION]
7 </uniformTimeCourse>
8 </listOfSimulations>

Listing 2.40: The SED-ML listOfSimulations element, defining two different simulations

2.4.3.1 UniformTimeCourse

SED-ML Level 1 Version 1 so far only supports the encoding of uniform time course experiments.

Table 2.16 on the next page shows all attributes and sub-elements for the uniformTimeCourse element
as defined by the SED-ML Level 1 Version 1 XML Schema.

Listing 2.41 on the following page shows the use of the uniformTimeCourse element in a SED-ML file as
defined by the SED-ML Level 1 Version 1 XML Schema.

2.4.3.1.1 initialTime

The attribute initialTime of type double represents the time from which to start the simulation.
Usually this will be 0. Listing 2.41 shows an example.

46

Figure 2.28: The UniformTimeCourse class

attribute description
metaido page 23
id page 22
nameo page 22
initialTime page 46
outputStartTime page 47
outputEndTime page 47
numberOfPoints page 47

sub-elements description
noteso page 23
annotationo page 24
algorithm page 48

Table 2.16: Attributes and nested elements for uniformTimeCourse. xyo denotes optional elements
and attributes.

1 <listOfSimulations>
2 <uniformTimeCourse id="s1" name="time course simulation of variable v1 over 100 minutes"
3 initialTime="0" outputStartTime="0" outputEndTime="2500" numberOfPoints="1000">
4 <algorithm [..] />
5 </uniformTimeCourse>
6 </listOfSimulations>

Listing 2.41: The SED-ML uniformTimeCourse element, defining a uniform time course simulation
over 2500 time units with 1000 simulation points.

2.4.3.1.2 outputStartTime

Sometimes a researcher is not interested in simulation results at the start of the simulation (i.e. the initial
time). To accommodate this in SED-ML the uniformTimeCourse class uses the attribute outputStartTime
of type double. To be valid the outputStartTime cannot be before initialTime. For an example, see
Listing 2.41.

2.4.3.1.3 outputEndTime

The attribute outputEndTime of type double marks the end time of the simulation. See Listing 2.41 for
an example.

2.4.3.1.4 numberOfPoints

When executed, the uniformTimeCourse simulation produces output on a regular grid starting with
outputStartTime and ending with outputEndTime. The attribute numberOfPoints of type integer
describes the number of points expected in the result. Software interpreting the uniformTimeCourse is
expected to produce a first outputPoint at time outputStartTime with the initial values of the model to
be simulated, and then numberOfPoints output points with the results of the simulation. Thus a total
of numberOfPoints + 1 output points will be produced.

Just because the output points lie on the regular grid described above, this does not mean that the
simulation algorithm has to work with the same step size. Usually the step size the simulator chooses
will be adaptive and much smaller than the required output step size. On the other hand a stochastic
simulator might not have any new events occurring between two grid points. Nevertheless the simulator
has to produce data on this regular grid. For an example, see Listing 2.41.

47

2.4.3.2 Algorithm

SED-ML makes use of the KiSAO ontology (Section 2.2.4 on page 21) to refer to a term in the controlled
vocabulary identifying the particular simulation algorithm to be used in the simulation.

Each instance of the Simulation class must contain one reference to a simulation algorithm (Figure 2.29).

Figure 2.29: The Algorithm class

Each instance of the Algorithm class must contain a KiSAO reference to a simulation algorithm. The
reference should define the simulation algorithm to be used in the simulation as precisely as possible,
and should be defined in the correct syntax, as defined by the regular expression KISAO:[0-9]{7}.

Table 2.17 shows all attributes and sub-elements for the Algorithm element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
kisaoID page 21

sub-elements description
noteso page 23
annotationo page 24

Table 2.17: Attributes and nested elements for algorithm. xyo denotes optional elements and at-
tributes.

The example given in code snippet in Listing 2.40, completed by algorithm definitions results in the
code given in Listing 2.42. For both simulations, one algorithm is defined. In the first simulation s1 a
deterministic approach has been chosen (Euler forward method), in the second simulation s2 a stochastic
approach is used (Stochsim nearest neighbor).

2.4.4 Task

A task in SED-ML links a model to a certain simulation description via their respective identifiers
(Figure 2.30 on the next page), using the modelReference and the simulationReference. In SED-ML
Level 1 Version 1 it is only possible to link one simulation description to one model at a time. However,
one can define as many tasks as needed within one experiment description. Please note that the tasks
may be executed in any order, as XML does not have an ordering concept.

Table 2.18 on the following page shows all attributes and sub-elements for the task element as defined
by the SED-ML Level 1 Version 1 XML Schema.

Listing 2.43 on the next page shows the use of the task element in a SED-ML file as defined by the
SED-ML Level 1 Version 1 XML Schema.

In the example, a simulation setting simulation1 is applied first to model1 and then is applied to model2.

2.4.5 DataGenerator

The DataGenerator class prepares the raw simulation results for later output (Figure 2.31 on page 50).
It encodes the post-processing to be applied to the simulation data. The post-processing steps could
be anything, from simple normalisations of data to mathematical calculations. Each instance of the
DataGenerator class is identifiable within the experiment by its unambiguous id. It can be further char-

48

1 <listOfSimulations>
2 <uniformTimeCourse id="s1" name="time course simulation over 100 minutes" [..]>
3 <algorithm kisaoID="KISAO:0000030" />
4 </uniformTimeCourse>
5 <uniformTimeCourse id="s2" name="time course definition for concentration of p" [..]>
6 <algorithm kisaoID="KISAO:0000021" />
7 </uniformTimeCourse>
8 </listOfSimulations>

Listing 2.42: The SED-ML algorithm element for two different time course simulations, defining two
different algorithms. KISAO:0000030 refers to the Euler forward method ; KISAO:0000021 refers
to the StochSim nearest neighbor algorithm.

Figure 2.30: The SED-ML Task class

attribute description
metaido page 23
id page 22
nameo page 22
modelReference page 27
simulationReference page 28

sub-elements description
noteso page 23
annotationo page 24

Table 2.18: Attributes and nested elements for task. xyo denotes optional elements and attributes.

1 <listOfTasks>
2 <task id="t1" name="task definition" modelReference="model1"
3 simulationReference="simulation 1" />
4 <task id="t2" name="another task definition" modelReference="model2"
5 simulationReference="simulation 1" />
6 </listOfTasks>

Listing 2.43: The task element

acterised by an optional name. The related Math class contains a mathML expression for the calculation
of the data generator. Mathematical functions available for the specification of data generators are given
in Section 2.2.1 on page 18. Variable and Parameter instances can be used to encode the mathematical
expression.

Table 2.19 on the next page shows all attributes and sub-elements for the dataGenerator element as
defined by the SED-ML Level 1 Version 1 XML Schema.

49

Figure 2.31: The SED-ML DataGenerator class

attribute description
metaido page 23
id page 22
nameo page 22

sub-elements description
math page 44
noteso page 23
annotationo page 24
variableo page 29
parametero page 31

Table 2.19: Attributes and nested elements for dataGenerator. xyo denotes optional elements and
attributes.

Listing 2.44 shows the use of the dataGenerator element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. The listOfDataGenerator contains two dataGenerator elements.

1 <listOfDatGenerators>
2 <dataGenerator id="d1" name="time">
3 <listOfVariables>
4 <variable id="time" taskReference="task1" symbol="urn:sedml:symbol:time" />
5 </listOfVariables >
6 <listOfParameters />
7 <math xmlns="http://www.w3.org/1998/Math/MathML">
8 <ci> time </ci>
9 </math>
10 </dataGenerator>
11 <dataGenerator id="d2" name="LaCI repressor">
12 <listOfVariables>
13 <variable id="v1" taskReference="task1"
14 target="/sbml:sbml/sbml:model/sbml:listOfSpecies/
15 sbml:species[@id=’PX’]" />
16 </listOfVariables>
17 <math:math>
18 <math:ci>v1</math:ci>
19 </math:math>
20 </dataGenerator>
21 </listOfDataGenerators>

Listing 2.44: Definition of two dataGenerator elements, time and LaCI repressor

The first one, d1, refers to the task definition t1 (which itself refers to a particular model), and from
the corresponding model it reuses the symbol time. The second one, d2, references a particular species
defined in the same model (and referred to via the taskReference="t1"). The model species with ID

50

PX is reused for the data generator d2 without further post-processing.

2.4.6 Output

The Ouput class describes how the results of a simulation should be presented to the user (Figure 2.32).
It does not contain the data itself, but the type of output and the data generators used to produce a

Figure 2.32: The SED-ML Output class

particular output.

The types of output pre-defined in SED-ML Level 1 Version 1 are plots and reports. The output can be
defined as a 2D plot or alternatively as a 3D plot.

Note that even though the terms “2D plot” and “3D plot” are used, the exact type of plot is not specified.
In other words, whether the 3D plot represents a surface plot, or three dimensional lines in space, cannot
be distinguished by SED-ML alone. It is expected that applications use annotations for this purpose.

Table 2.20 shows all attributes and sub-elements for the output element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22

sub-elements description
noteso page 23
annotationo page 24
plot2Do page 52
plot3Do page 52
reporto page 52

Table 2.20: Attributes and nested elements for output. xyo denotes optional elements and attributes.

51

2.4.6.1 Plot2D

A 2 dimensional plot (Figure 2.33) contains a number of curve definitions.

Figure 2.33: The SED-ML Plot2D class

Table 2.21 shows all attributes and sub-elements for the plot2D element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description

noteso page 23
annotationo page 24
curve page 53

Table 2.21: Attributes and nested elements for plot2D. xyo denotes optional elements and attributes.

Listing 2.45 shows the use of the listOfCurves element in a SED-ML file as defined by the SED-ML
Level 1 Version 1 XML Schema. The listing shows the definition of a 2 dimensional plot containing one

1 <plot2D>
2 <listOfCurves>
3 <curve>
4 [CURVE DEFINITION]
5 </curve>
6 [FURTHER CURVE DEFINITIONS]
7 </listOfCurves>
8 </plot2D>

Listing 2.45: The plot2D element with the nested listOfCurves element

curve element inside the listOfCurves. The curve definition follows in Section 2.4.7.1 on page 53.

2.4.6.2 Plot3D

A 3 dimensional plot (Figure 2.34 on the following page) contains a number of surface definitions.

Table 2.22 on the next page shows all attributes and sub-elements for the plot3D element as defined by
the SED-ML Level 1 Version 1 XML Schema.

Listing 2.46 on the following page shows the use of the plot3D element in a SED-ML file as defined by
the SED-ML Level 1 Version 1 XML Schema. The example defines a surface for the 3 dimensional plot.
The surface definition follows in Section 2.4.7.2 on page 55.

2.4.6.3 The Report class

The Report class defines a data table consisting of several single instances of the DataSet class (Fig-
ure 2.35 on page 54). Its output returns the simulation result in actual numbers. The particular columns
of the report table are defined by creating an instance of the DataSet class for each column.

Table 2.23 on page 54 shows all attributes and sub-elements for the report element as defined by the
SED-ML Level 1 Version 1 XML Schema.

Listing 2.47 on the next page shows the use of the listOfDataSets element in a SED-ML file as defined
by the SED-ML Level 1 Version 1 XML Schema.

52

Figure 2.34: The SED-ML Plot3D class

attribute description
metaido page 23
id page 22
nameo page 22

sub-elements description
noteso page 23
annotationo page 24
surface page 55

Table 2.22: Attributes and nested elements for plot3D. xyo denotes optional elements and attributes.

1 <plot3D>
2 <listOfSurfaces>
3 <surface>
4 [SURFACE DEFINITION]
5 </surface>
6 [FURTHER SURFACE DEFINITIONS]
7 </listOfSurfaces>
8 </plot3D>

Listing 2.46: The plot3D element with the nested listOfSurfaces element

1 <report>
2 <listOfDataSets>
3 <dataSet>
4 [DATA REFERENCE]
5 </dataSet>
6 </listOfDataSets>
7 </report>

Listing 2.47: The report element with the nested listOfDataSets element

The simulation result itself, i. e. concrete result numbers, are not stored in SED-ML, but the directive
how to calculate them from the output of the simulator is provided through the dataGenerator.

The encoding of simulation results is outside the scope of SED-ML, but other efforts exist, for example
the Systems Biology Result Markup Language (SBRML, [Dada et al., 2010]).

2.4.7 Output components

2.4.7.1 Curve

One or more instances of the Curve class define a 2D plot. A curve needs a data generator reference to
refer to the data that will be plotted on the x-axis, using the xDataReference. A second data generator
reference is needed to refer to the data that will be plotted on the y-axis, using the yDataReference.

Table 2.24 on page 55 shows all attributes and sub-elements for the curve element as defined by the
SED-ML Level 1 Version 1 XML Schema.

Listing 2.48 shows the use of the curve element in a SED-ML file as defined by the SED-ML Level 1
Version 1 XML Schema. Here, only one curve is created, results shown on the x-axis are generated by

1 <listOfCurves>
2 <curve id="c1" name="v1 / time" xDataReference="dg1" yDataReference="dg2" logX="true" logY="false" />
3 </listOfCurves>

Listing 2.48: The SED-ML curve element, defining the output curve showing the result of simulation
for the referenced dataGenerators

53

Figure 2.35: The SED-ML Report class

attribute description
metaido page 23
id page 22
nameo page 22

sub-elements description
noteso page 23
annotationo page 24
dataSet page 56

Table 2.23: Attributes and nested elements for report. xyo denotes optional elements and attributes.

Figure 2.36: The SED-ML Curve class

the data generator dg1, results shown on the y-axis are generated by the data generator dg2. Both dg1
and dg2 need to be already defined in the listOfDataGenerators. The x-axis is plotted logarithmically.

2.4.7.1.1 logX

logX is a required attribute of the Curve class and defines whether or not the data output on the x-axis is
logarithmic. The data type of logX is boolean. To make the output on the x-axis of a plot logarithmic,
logX must be set to “true”, as shown in the sample Listing 2.48.

logX is also used in the definition of a Surface output.

2.4.7.1.2 logY

logY is a required attribute of the Curve class and defines whether or not the data output on the y-axis is
logarithmic. The data type of logY is boolean. To make the output on the y-axis of a plot logarithmic,
logY must be set to “true”, as shown in the sample Listing 2.48.

logY is also used in the definition of a Surface output.

2.4.7.1.3 xDataReference

The xDataReference is a mandatory attribute of the Curve object. Its content refers to a dataGenerator
ID which denotes the DataGenerator object that is used to generate the output on the x-axis of a Curve
in a 2D Plot. The xDataReference data type is string. However, the valid values for the xDataReference
are restricted to the IDs of already defined DataGenerator objects.

An example for the definition of a curve is given in Listing 2.48. xDataReference is also used in the
definition of the x-axis of a Surface in a 3D Plot.

54

attribute description
metaido page 23
id page 22
nameo page 22
logX page 54
xDataReference page 54
logY page 54
yDataReference page 55

sub-elements description
noteso page 23
annotationo page 24

Table 2.24: Attributes and nested elements for curve. xyo denotes optional elements and attributes.

2.4.7.1.4 yDataReference

The yDataReference is a mandatory attribute of the Curve object. Its content refers to a dataGenerator
ID which denotes the DataGenerator object that is used to generate the output on the y-axis of a Curve
in a 2D Plot. The yDataReference data type is string. However, the number of valid values for the
yDataReference is restricted to the IDs of already defined DataGenerator objects.

An example for the definition of a curve is given in listing 2.48. yDataReference is also used in the
definition of the y-axis of a Surface in a 3D Plot.

2.4.7.2 Surface

A surface is a three-dimensional figure representing a simulation result (Figure 2.37).

Figure 2.37: The SED-ML Surface class

Creating an instance of the Surface class demands the definition of three different axes, that is which
data to plot on which axis and in which way. The aforementioned xDataReference and yDataReference
attributes define the according data generators for both the x- and y-axis of a surface. In addition, the
zDataReference attribute defines the output for the z-axis. All axes might be logarithmic or not. This
can be specified through the logX, logY, and the logZ attributes in the according dataReference elements.

Table 2.25 on the next page shows all attributes and sub-elements for the surface element as defined by
the SED-ML Level 1 Version 1 XML Schema. Listing 2.49 on the following page shows the use of the
surface element in a SED-ML file as defined by the SED-ML Level 1 Version 1 XML Schema.

Here, only one surface is created, results shown on the x-axis are generated by the data generator dg1,
results shown on the y-axis are generated by the data generator dg2, and results shown on the z-axis
are generated by the data generator dg3. All dg1, dg2 and dg3 need to be already defined in the
listOfDataGenerators.

55

attribute description
metaido page 23
id page 22
nameo page 22
logX page 54
xDataReference page 54
logY page 54
yDataReference page 55
logZ page 56
zDataReference page 56

sub-elements description
noteso page 23
annotationo page 24

Table 2.25: Attributes and nested elements for surface. xyo denotes optional elements and attributes.

1 <listOfSurfaces>
2 <surface id="s1" name="surface" xDataReference="dg1" yDataReference="dg2" zDataReference="dg3"
3 logX="true" logY="false" logZ="false" />
4 [FURTHER SURFACE DEFINITIONS]
5 </listOfSurfaces>

Listing 2.49: The SED-ML surface element, defining the output showing the result of the referenced
task

2.4.7.2.1 logZ

logZ is a required attribute of the Surface class and defines whether or not the data output on the z-axis
is logarithmic. The data type of logZ is boolean. To make the output on the z-axis of a surface plot
logarithmic, logZ must be set to “true”, as shown in the sample Listing 2.49.

2.4.7.2.2 zDataReference

The zDataReference is a mandatory attribute of the Surface object. Its content refers to a dataGenerator
ID which denotes the DataGenerator object that is used to generate the output on the z-axis of a 3D
Plot. The zDataReference data type is string. However, the valid values for the zDataReference are
restricted to the IDs of already defined DataGenerator objects.

An example using the zDataReference is given in Listing 2.49 on page 56.

2.4.7.3 DataSet

The DataSet class holds definitions of data to be used in the Report class (Figure 2.38). Data sets are

Figure 2.38: The SED-ML DataSet class

labeled references to instances of the DataGenerator class.

56

Table 2.26 shows all attributes and sub-elements for the dataSet element as defined by the SED-ML
Level 1 Version 1 XML Schema.

attribute description
metaido page 23
id page 22
nameo page 22
dataReference page 57
label page 57

sub-elements description
noteso page 23
annotationo page 24

Table 2.26: Attributes and nested elements for dataSet. xyo denotes optional elements and attributes.

2.4.7.3.1 label

Each data set in a Report does have to carry an unambiguous label. A label is a human readable
descriptor of a data set for use in a report. For example, for a tabular data set of time series results, the
label could be the column heading.

2.4.7.3.2 dataReference

The dataReference attribute contains the ID of a dataGenerator element and as such represents a link
to it. The data produced by that particular data generator fills the according data set in the report.

57

Listing 2.50 shows the use of the dataSet element in a SED-ML file as defined by the SED-ML Level 1
Version 1 XML Schema.

1 <listOfDataSets>
2 <dataSet id="d1" name="v1 over time" dataReference="dg1" label="_1">
3 </listOfDataSets>

Listing 2.50: The SED-ML dataSet element, defining a data set containing the result of the referenced
task

58

3. Acknowledgements

The SED-ML specification has been developed with the input of many people. Main contributors of the
current specification include Richard Adams, Frank Bergmann, Stefan Hoops, Nicolas Le Novère, Ion
Moraru, Sven Sahle, Henning Schmidt and Dagmar Waltemath.

Thanks to David Nickerson for feedback and help with Example C2.

Moreover, we would like to thank all the participants of the meetings where SED-ML has been discussed
as well as the subscribers of the sed-ml-discuss mailing list.

59

A. SED-ML UML Overview

Figure A.1 shows the complete UML diagram of the SED-ML. It gives the full picture of all implemented
classes (see the XML Schema definition on page 61).

Figure A.1: The SED-ML UML class diagram

60

B. XML Schema

Listing B.1 shows the full SED-ML XML Schema. The code is commented inline.

1 <xs:schema targetNamespace="http://www.biomodels.net/sed-ml"
2 xmlns="http://www.biomodels.net/sed-ml" xmlns:xs="http://www.w3.org/2001/XMLSchema"
3 xmlns:math="http://www.w3.org/1998/Math/MathML">
4 <xs:import namespace="http://www.w3.org/1998/Math/MathML"
5 schemaLocation="sbml-mathml.xsd" />
6

7

8 <xs:simpleType name="SId">
9 <xs:annotation>
10 <xs:documentation>
11 The type SId is used throughout SED-ML as the
12 type of the ’id’ attributes on model elements.
13 </xs:documentation>
14 </xs:annotation>
15 <xs:restriction base="xs:string">
16 <xs:pattern value="(_|[a-z]|[A-Z])(_|[a-z]|[A-Z]|[0-9])*" />
17 </xs:restriction>
18 </xs:simpleType>
19

20 <!-- attribute group for elements with ID/name att -->
21 <xs:attributeGroup name="idGroup">
22 <xs:attribute name="id" use="required" type="SId"></xs:attribute>
23 <xs:attribute name="name" use="optional" type="xs:string"></xs:attribute>
24 </xs:attributeGroup>
25

26

27

28 <!-- SED Base class -->
29 <xs:complexType name="SEDBase">
30 <xs:annotation>
31 <xs:documentation xml:lang="en">
32 The SEDBase type is the
33 base type of all main types in SED-ML. It
34 serves as a container for
35 the annotation of any part of the
36 experiment description.
37 </xs:documentation>
38 </xs:annotation>
39 <xs:sequence>
40 <xs:element ref="notes" minOccurs="0" />
41 <xs:element ref="annotation" minOccurs="0" />
42 </xs:sequence>
43 <!--
44 This must be a variable -type identifier ,i.e., (Letter | ’_’)
45 (NCNameChar)* that is unique in the document.
46 -->
47 <xs:attribute name="metaid" type="xs:ID" use="optional"></xs:attribute>
48 </xs:complexType>
49 <xs:element name="sedML">
50 <xs:complexType>
51 <xs:complexContent>
52 <xs:extension base="SEDBase">
53 <xs:sequence>
54 <xs:element ref="listOfSimulations" minOccurs="0" />
55 <xs:element ref="listOfModels" minOccurs="0" />
56 <xs:element ref="listOfTasks" minOccurs="0" />
57 <xs:element ref="listOfDataGenerators" minOccurs="0" />
58 <xs:element ref="listOfOutputs" minOccurs="0" />
59 </xs:sequence>
60 <xs:attribute name="level" type="xs:decimal" use="required"
61 fixed="1" />
62 <xs:attribute name="version" type="xs:decimal" use="required"
63 fixed="1" />
64 </xs:extension>
65 </xs:complexContent>
66 </xs:complexType>
67 </xs:element>
68 <!-- notes and annotations -->
69 <xs:element name="notes">

61

70 <xs:complexType>
71 <xs:sequence>
72 <xs:any namespace="http://www.w3.org/1999/xhtml"
73 processContents="skip" minOccurs="0" maxOccurs="unbounded" />
74 </xs:sequence>
75 </xs:complexType>
76 </xs:element>
77 <xs:element name="annotation">
78 <xs:complexType>
79 <xs:sequence>
80 <xs:any processContents="skip" minOccurs="0" maxOccurs="unbounded" />
81 </xs:sequence>
82 </xs:complexType>
83 </xs:element>
84 <!-- KiSAO ID type -->
85 <xs:simpleType name="KisaoType">
86 <xs:restriction base="xs:string">
87 <xs:pattern value="KISAO:[0-9][0-9][0-9][0-9][0-9][0-9][0-9]" />
88 </xs:restriction>
89 </xs:simpleType>
90

91 <!-- global element declarations -->
92 <xs:element name="variable">
93 <xs:complexType>
94 <xs:complexContent>
95 <xs:extension base="SEDBase">
96 <!-- at least one of taskReference or modelReference must be set -->
97 <xs:attribute name="taskReference" type="SId"
98 use="optional" />
99 <xs:attribute name="modelReference" type="SId"
100 use="optional" />
101

102 <!--
103 either target or symbol have to be used in the variable definition
104 -->
105 <xs:attribute name="target" type="xs:token" use="optional" />
106 <xs:attribute name="symbol" type="xs:string" use="optional" />
107 <xs:attributeGroup ref="idGroup" />
108 </xs:extension>
109 </xs:complexContent>
110 </xs:complexType>
111 </xs:element>
112 <xs:element name="parameter">
113 <xs:complexType>
114 <xs:complexContent>
115 <xs:extension base="SEDBase">
116 <xs:attributeGroup ref="idGroup" />
117 <xs:attribute name="value" type="xs:double" use="required" />
118 </xs:extension>
119 </xs:complexContent>
120 </xs:complexType>
121 </xs:element>
122 <xs:element name="algorithm">
123 <xs:complexType>
124 <xs:complexContent>
125 <xs:extension base="SEDBase">
126 <xs:attribute name="kisaoID" type="KisaoType" use="required" />
127 </xs:extension>
128 </xs:complexContent>
129 </xs:complexType>
130 </xs:element>
131 <xs:element name="uniformTimeCourse">
132 <xs:complexType>
133 <xs:complexContent>
134 <xs:extension base="SEDBase">
135 <xs:sequence>
136 <xs:element ref="algorithm" />
137 </xs:sequence>
138 <xs:attributeGroup ref="idGroup" />
139 <xs:attribute name="outputStartTime" type="xs:double"
140 use="required" />
141 <xs:attribute name="outputEndTime" type="xs:double"
142 use="required" />
143 <xs:attribute name="numberOfPoints" type="xs:integer"
144 use="required" />
145 <xs:attribute name="initialTime" type="xs:double" use="required" />
146 </xs:extension>
147 </xs:complexContent>
148 </xs:complexType>
149 </xs:element>
150 <xs:element name="task">
151 <xs:complexType>
152 <xs:complexContent>
153 <xs:extension base="SEDBase">
154 <xs:attribute name="simulationReference" type="SId"
155 use="required" />
156

157 <xs:attribute name="modelReference" type="SId"
158 use="required" />

62

159 <xs:attributeGroup ref="idGroup" />
160 </xs:extension>
161 </xs:complexContent>
162 </xs:complexType>
163 </xs:element>
164 <xs:element name="plot2D">
165 <xs:complexType>
166 <xs:complexContent>
167 <xs:extension base="SEDBase">
168 <xs:sequence>
169 <xs:element ref="listOfCurves" minOccurs="0" />
170 </xs:sequence>
171 <xs:attributeGroup ref="idGroup" />
172 </xs:extension>
173 </xs:complexContent>
174 </xs:complexType>
175 </xs:element>
176 <xs:element name="plot3D">
177 <xs:complexType>
178 <xs:complexContent>
179 <xs:extension base="SEDBase">
180 <xs:sequence>
181 <xs:element ref="listOfSurfaces" minOccurs="0" />
182 </xs:sequence>
183 <xs:attributeGroup ref="idGroup" />
184 </xs:extension>
185 </xs:complexContent>
186 </xs:complexType>
187 </xs:element>
188 <xs:element name="report">
189 <xs:complexType>
190 <xs:complexContent>
191 <xs:extension base="SEDBase">
192 <xs:sequence>
193 <xs:element ref="listOfDataSets" minOccurs="0" />
194 </xs:sequence>
195 <xs:attributeGroup ref="idGroup" />
196 </xs:extension>
197 </xs:complexContent>
198 </xs:complexType>
199 </xs:element>
200 <xs:element name="model">
201 <xs:complexType>
202 <xs:complexContent>
203 <xs:extension base="SEDBase">
204 <xs:sequence>
205 <xs:element ref="listOfChanges" minOccurs="0" />
206 </xs:sequence>
207 <xs:attribute name="language" type="xs:anyURI" use="optional"
208 default="urn:sedml:language:xml" />
209 <xs:attribute name="source" type="xs:anyURI" use="required" />
210 <xs:attributeGroup ref="idGroup" />
211 </xs:extension>
212 </xs:complexContent>
213 </xs:complexType>
214 </xs:element>
215 <!-- math element, does not inherit from SEDBase -->
216 <xs:element name="math" type="math:Math" />
217 <!-- listOf elements -->
218 <xs:element name="listOfVariables">
219 <xs:complexType>
220 <xs:complexContent>
221 <xs:extension base="SEDBase">
222 <xs:sequence>
223 <xs:element ref="variable" minOccurs="0" maxOccurs="unbounded" />
224 </xs:sequence>
225 </xs:extension>
226 </xs:complexContent>
227 </xs:complexType>
228 </xs:element>
229 <xs:element name="listOfParameters">
230 <xs:complexType>
231 <xs:complexContent>
232 <xs:extension base="SEDBase">
233 <xs:sequence>
234 <xs:element ref="parameter" minOccurs="0" maxOccurs="unbounded" />
235 </xs:sequence>
236 </xs:extension>
237 </xs:complexContent>
238 </xs:complexType>
239 </xs:element>
240 <xs:element name="listOfTasks">
241 <xs:complexType>
242 <xs:complexContent>
243 <xs:extension base="SEDBase">
244 <xs:sequence>
245 <xs:element ref="task" minOccurs="0" maxOccurs="unbounded" />
246 </xs:sequence>
247 </xs:extension>

63

248 </xs:complexContent>
249 </xs:complexType>
250 </xs:element>
251 <xs:element name="listOfSimulations">
252 <xs:complexType>
253 <xs:complexContent>
254 <xs:extension base="SEDBase">
255 <xs:sequence>
256 <xs:element ref="uniformTimeCourse" minOccurs="0"
257 maxOccurs="unbounded" />
258 </xs:sequence>
259 </xs:extension>
260 </xs:complexContent>
261 </xs:complexType>
262 </xs:element>
263 <xs:element name="listOfOutputs">
264 <xs:complexType>
265 <xs:complexContent>
266 <xs:extension base="SEDBase">
267 <xs:sequence minOccurs="0">
268 <xs:element ref="plot2D" minOccurs="0" maxOccurs="unbounded" />
269 <xs:element ref="plot3D" minOccurs="0" maxOccurs="unbounded" />
270 <xs:element ref="report" minOccurs="0" maxOccurs="unbounded" />
271 </xs:sequence>
272 </xs:extension>
273 </xs:complexContent>
274 </xs:complexType>
275 </xs:element>
276 <xs:element name="listOfModels">
277 <xs:complexType>
278 <xs:complexContent>
279 <xs:extension base="SEDBase">
280 <xs:sequence>
281 <xs:element ref="model" minOccurs="0" maxOccurs="unbounded" />
282 </xs:sequence>
283 </xs:extension>
284 </xs:complexContent>
285 </xs:complexType>
286 </xs:element>
287 <xs:element name="listOfDataGenerators">
288 <xs:complexType>
289 <xs:complexContent>
290 <xs:extension base="SEDBase">
291 <xs:sequence>
292 <xs:element ref="dataGenerator" minOccurs="0"
293 maxOccurs="unbounded" />
294 </xs:sequence>
295 </xs:extension>
296 </xs:complexContent>
297 </xs:complexType>
298 </xs:element>
299 <xs:element name="listOfCurves">
300 <xs:complexType>
301 <xs:complexContent>
302 <xs:extension base="SEDBase">
303 <xs:sequence>
304 <xs:element ref="curve" maxOccurs="unbounded" />
305 </xs:sequence>
306 </xs:extension>
307 </xs:complexContent>
308 </xs:complexType>
309 </xs:element>
310 <xs:element name="listOfSurfaces">
311 <xs:complexType>
312 <xs:complexContent>
313 <xs:extension base="SEDBase">
314 <xs:sequence>
315 <xs:element ref="surface" maxOccurs="unbounded" />
316 </xs:sequence>
317 </xs:extension>
318 </xs:complexContent>
319 </xs:complexType>
320 </xs:element>
321 <xs:element name="listOfDataSets">
322 <xs:complexType>
323 <xs:complexContent>
324 <xs:extension base="SEDBase">
325 <xs:sequence>
326 <xs:element ref="dataSet" maxOccurs="unbounded" />
327 </xs:sequence>
328 </xs:extension>
329 </xs:complexContent>
330 </xs:complexType>
331 </xs:element>
332 <!-- change -->
333 <xs:element name="listOfChanges">
334 <xs:complexType>
335 <xs:complexContent>
336 <xs:extension base="SEDBase">

64

337 <xs:sequence>
338 <xs:element ref="changeAttribute" minOccurs="0"
339 maxOccurs="unbounded" />
340 <xs:element ref="changeXML" minOccurs="0" maxOccurs="unbounded" />
341 <xs:element ref="addXML" minOccurs="0" maxOccurs="unbounded" />
342 <xs:element ref="removeXML" minOccurs="0" maxOccurs="unbounded" />
343 <xs:element ref="computeChange" minOccurs="0"
344 maxOccurs="unbounded" />
345 </xs:sequence>
346 </xs:extension>
347 </xs:complexContent>
348 </xs:complexType>
349 </xs:element>
350 <xs:element name="newXML">
351 <xs:complexType>
352 <xs:sequence>
353 <xs:any processContents="skip" minOccurs="1" maxOccurs="unbounded" />
354 </xs:sequence>
355 </xs:complexType>
356 </xs:element>
357 <xs:element name="changeAttribute">
358 <xs:complexType>
359 <xs:complexContent>
360 <xs:extension base="SEDBase">
361 <xs:attribute name="target" use="required" type="xs:token" />
362 <xs:attribute name="newValue" type="xs:string" use="required" />
363 </xs:extension>
364 </xs:complexContent>
365 </xs:complexType>
366 </xs:element>
367 <xs:element name="changeXML">
368 <xs:complexType>
369 <xs:complexContent>
370 <xs:extension base="SEDBase">
371 <xs:sequence>
372 <xs:element ref="newXML" />
373 </xs:sequence>
374 <xs:attribute name="target" use="required" type="xs:token" />
375 </xs:extension>
376 </xs:complexContent>
377 </xs:complexType>
378 </xs:element>
379 <xs:element name="addXML">
380 <xs:complexType>
381 <xs:complexContent>
382 <xs:extension base="SEDBase">
383 <xs:sequence>
384 <xs:element ref="newXML" />
385 </xs:sequence>
386 <xs:attribute name="target" use="required" type="xs:token" />
387 </xs:extension>
388 </xs:complexContent>
389 </xs:complexType>
390 </xs:element>
391 <xs:element name="removeXML">
392 <xs:complexType>
393 <xs:complexContent>
394 <xs:extension base="SEDBase">
395 <xs:attribute name="target" use="required" type="xs:token" />
396 </xs:extension>
397 </xs:complexContent>
398 </xs:complexType>
399 </xs:element>
400 <xs:element name="computeChange">
401 <xs:complexType>
402 <xs:complexContent>
403 <xs:extension base="SEDBase">
404 <xs:sequence>
405 <xs:element ref="listOfVariables" minOccurs="0" />
406 <xs:element ref="listOfParameters" minOccurs="0" />
407 <xs:element ref="math" />
408 </xs:sequence>
409 <xs:attribute name="target" use="required" type="xs:token" />
410 </xs:extension>
411 </xs:complexContent>
412 </xs:complexType>
413 </xs:element>
414 <!-- data generator -->
415 <xs:element name="dataGenerator">
416 <xs:complexType>
417 <xs:complexContent>
418 <xs:extension base="SEDBase">
419 <xs:sequence>
420 <xs:element ref="listOfVariables" minOccurs="0" />
421 <xs:element ref="listOfParameters" minOccurs="0" />
422 <xs:element ref="math" />
423 </xs:sequence>
424 <xs:attributeGroup ref="idGroup" />
425 </xs:extension>

65

426 </xs:complexContent>
427 </xs:complexType>
428 </xs:element>
429 <xs:element name="curve">
430 <xs:complexType>
431 <xs:complexContent>
432 <xs:extension base="SEDBase">
433 <xs:attributeGroup ref="idGroup" />
434 <xs:attribute name="yDataReference" type="SId"
435 use="required" />
436 <xs:attribute name="xDataReference" type="SId"
437 use="required" />
438

439 <xs:attribute name="logY" use="required" type="xs:boolean" />
440 <xs:attribute name="logX" use="required" type="xs:boolean" />
441 </xs:extension>
442 </xs:complexContent>
443 </xs:complexType>
444 </xs:element>
445 <xs:element name="surface">
446 <xs:complexType>
447 <xs:complexContent>
448 <xs:extension base="SEDBase">
449 <xs:attributeGroup ref="idGroup" />
450 <xs:attribute name="yDataReference" type="SId"
451 use="required" />
452 <xs:attribute name="xDataReference" type="SId"
453 use="required" />
454 <xs:attribute name="zDataReference" type="SId"
455 use="required" />
456 <xs:attribute name="logY" use="required" type="xs:boolean" />
457 <xs:attribute name="logX" use="required" type="xs:boolean" />
458 <xs:attribute name="logZ" use="required" type="xs:boolean" />
459 </xs:extension>
460 </xs:complexContent>
461 </xs:complexType>
462 </xs:element>
463 <xs:element name="dataSet">
464 <xs:complexType>
465 <xs:complexContent>
466 <xs:extension base="SEDBase">
467 <xs:attribute name="dataReference" type="SId"
468 use="required"></xs:attribute>
469 <xs:attribute name="label" use="required" type="xs:string" />
470 <xs:attributeGroup ref="idGroup" />
471 </xs:extension>
472 </xs:complexContent>
473 </xs:complexType>
474 </xs:element>
475 </xs:schema>

Listing B.1: The SED-ML XML Schema definition

66

C. Examples

This appendix present a few examples SED-ML uses. These examples are only illustrative and do not
intend to demonstrate the full capabilities of SED-ML. Please read the specification for a for a more
comprehensive view (Chapter 2).

The current examples make use of models encoded in SBML and CellML. It is important to remember
that SED-ML is not restricted to those formats, but can be used with models encoded in many formats,
so long as they are serialized in XML. A list of formats known to have been used, at least tentatively,
with SED-ML is available on http://sed-ml.org/.

67

http://sed-ml.org/

C.1 Le Loup Model (SBML)

The following example provides a SED-ML description for the simulation of the model based on the
publication by Leoup, Gonze and Goldbeter “Limit Cycle Models for Circadian Rhythms Based on
Transcriptional Regulation in Drosophila and Neurospora” (PubMed ID: 10643740).

This model is referenced by its SED-ML ID model1 and refers to the model with the MIRIAM URN urn:
miriam:biomodels.db:BIOMD0000000021. Software applications interpreting this example know how to
dereference this URN and access the model in BioModels Database [Le Novère et al., 2006].

A second model is defined in l. 11 of the example, using model1 as a source and applying even further
changes to it, in this case updating two model parameters.

One simulation setup is defined in the listOfSimulations. It is a uniformTimeCourse over 380 time
units, providing 1000 output points. The algorithm used is the CVODE solver, as denoted by the KiSAO
ID KiSAO:0000019.

A number of dataGenerators are defined in ll. 23-62. Those are the prerequisite for defining the outputs
of the simulation. The first dataGenerator named time collects the simulation time. tim1 in l. 31
maps on the Mt entity in the model that is used in task1 which here is the model with ID model1. The
dataGenerator named per-tim1 in l. 39 maps on the Cn entity in model1. Finally the fourth and fifth
dataGenerators map on the Mt and per-tim entity respectively in the updated model with ID model2.

The output defined in the experiment consists of three 2D plots. The first plot has two different curves
(ll. 65-70) and provides the time course of the simulation using the tim mRNA concentrations from both
simulation experiments. The second plot shows the per-tim concentration against the tim concentration
for the oscillating model. And the third plot shows the same plot for the chaotic model. The resulting
three plots are shown in Figure C.1.

Figure C.1: The simulation result gained from the simulation description given in listing C.1

1 <?xml version="1.0" encoding="utf-8"?>
2 <!-- Written by libSedML v1.1.4092.21172 see http://libsedml.sf.net -->
3 <sedML xmlns="http://www.biomodels.net/sed-ml">
4 <listOfSimulations>
5 <uniformTimeCourse id="simulation1" initialTime="0" outputStartTime="0" outputEndTime="380"

numberOfPoints="1000">
6 <algorithm kisaoID="KISAO:0000019" />
7 </uniformTimeCourse>

68

urn:miriam:biomodels.db:BIOMD0000000021
urn:miriam:biomodels.db:BIOMD0000000021

8 </listOfSimulations>
9 <listOfModels>
10 <model id="model1" name="Circadian Oscillations" language="urn:sedml:language:sbml" source="

urn:miriam:biomodels.db:BIOMD0000000021" />
11 <model id="model2" name="Circadian Chaos" language="urn:sedml:language:sbml" source="model1">
12 <listOfChanges>
13 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="

V_mT"]/@value" newValue="0.28" />
14 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="

V_dT"]/@value" newValue="4.8" />
15 </listOfChanges>
16 </model>
17 </listOfModels>
18 <listOfTasks>
19 <task id="task1" modelReference="model1" simulationReference="simulation1" />
20 <task id="task2" modelReference="model2" simulationReference="simulation1" />
21 </listOfTasks>
22 <listOfDataGenerators>
23 <dataGenerator id="time" name="time">
24 <listOfVariables>
25 <variable id="t" taskReference="task1" symbol="urn:sedml:symbol:time" />
26 </listOfVariables>
27 <math xmlns="http://www.w3.org/1998/Math/MathML">
28 <ci> t </ci>
29 </math>
30 </dataGenerator>
31 <dataGenerator id="tim1" name="tim mRNA">
32 <listOfVariables>
33 <variable id="v1" taskReference="task1" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

sbml:species[@id=’Mt’]" />
34 </listOfVariables>
35 <math xmlns="http://www.w3.org/1998/Math/MathML">
36 <ci> v1 </ci>
37 </math>
38 </dataGenerator>
39 <dataGenerator id="per_tim1" name="nuclear PER-TIM complex">
40 <listOfVariables>
41 <variable id="v1a" taskReference="task1" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

sbml:species[@id=’Cn’]" />
42 </listOfVariables>
43 <math xmlns="http://www.w3.org/1998/Math/MathML">
44 <ci> v1a </ci>
45 </math>
46 </dataGenerator>
47 <dataGenerator id="tim2" name="tim mRNA (changed parameters)">
48 <listOfVariables>
49 <variable id="v2" taskReference="task2" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

sbml:species[@id=’Mt’]" />
50 </listOfVariables>
51 <math xmlns="http://www.w3.org/1998/Math/MathML">
52 <ci> v2 </ci>
53 </math>
54 </dataGenerator>
55 <dataGenerator id="per_tim2" name="nuclear PER-TIM complex">
56 <listOfVariables>
57 <variable id="v2a" taskReference="task2" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/

sbml:species[@id=’Cn’]" />
58 </listOfVariables>
59 <math xmlns="http://www.w3.org/1998/Math/MathML">
60 <ci> v2a </ci>
61 </math>
62 </dataGenerator>
63 </listOfDataGenerators>
64 <listOfOutputs>
65 <plot2D id="plot1" name="tim mRNA with Oscillation and Chaos">
66 <listOfCurves>
67 <curve id="c1" logX="false" logY="false" xDataReference="time" yDataReference="tim1" />
68 <curve id="c2" logX="false" logY="false" xDataReference="time" yDataReference="tim2" />
69 </listOfCurves>
70 </plot2D>
71 <plot2D id="plot2" name="tim mRNA limit cycle (Oscillation)">
72 <listOfCurves>
73 <curve id="c3" logX="false" logY="false" xDataReference="per_tim1" yDataReference="tim1" />
74 </listOfCurves>
75 </plot2D>
76 <plot2D id="plot3" name="tim mRNA limit cycle (chaos)">
77 <listOfCurves>
78 <curve id="c4" logX="false" logY="false" xDataReference="per_tim2" yDataReference="tim2" />
79 </listOfCurves>
80 </plot2D>
81 </listOfOutputs>
82 </sedML>

Listing C.1: LeLoup Model Simulation Description in SED-ML

69

C.2 Le Loup Model (CellML)

The following example provides a SED-ML description for the simulation of the model based on the
publication by Leloup, Gonze and Goldbeter “Limit Cycle Models for Circadian Rhythms Based on
Transcriptional Regulation in Drosophila and Neurospora” (PubMed ID: 10643740). Whereas the previ-
ous example used SBML to encode the simulation experiment, here the model is taken from the CellML
Model Repository [Lloyd et al., 2008].

The original model used in the simulation experiment is referred to using a URL (http://models.cellml.
org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/7606a47e222bc3b3d9117baa08d2e7246d67eedd/

leloup_gonze_goldbeter_1999_a.cellml, ll. 14).

A second model is defined in l. 15 of the example, using model1 as a source and applying even further
changes to it, in this case updating two model parameters.

One simulation setup is defined in the listOfSimulations. It is a uniformTimeCourse over 380 time
units, using 1000 simulation points. The algorithm used is the CVODE solver, as denoted by the KiSAO
ID KiSAO:0000019.

A number of dataGenerators are defined in ll. 27-73. Those are the prerequisite for defining the output
of the simulation. The dataGenerator named tim1 in l. 37 maps on the Mt entity in the model that is
used in task1, which here is the model with ID model1. The dataGenerator named per-tim in l. 46
maps on the CN entity in model1. Finally the fourth and fifth dataGenerators map on the Mt and per-tim
entity respectively in the updated model with ID model2.

The output defined in the experiment consists of three 2D plots (ll. 74-91). They reproduce the same
output as the previous example.

Figure C.2: The simulation result gained from the simulation description given in listing C.2

1 <?xml version="1.0" encoding="utf-8"?>
2 <sedML xmlns="http://sed-ml.org/"
3 xmlns:math="http://www.w3.org/1998/Math/MathML" level="1" version="1">
4 <notes><p xmlns="http://www.w3.org/1999/xhtml">Comparing Limit Cycles and strange attractors for
5 oscillation in Drosophila</p></notes>
6 <listOfSimulations>
7 <uniformTimeCourse id="simulation1" algorithm="KiSAO:0000019"
8 initialTime="0" outputStartTime="0" outputEndTime="380"
9 numberOfPoints="1000" >
10 <algorithm kisaoID="KISAO:0000019"/>
11 </uniformTimeCourse>

70

http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/7606a47e222bc3b3d9117baa08d2e7246d67eedd/leloup_gonze_goldbeter_1999_a.cellml
http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/7606a47e222bc3b3d9117baa08d2e7246d67eedd/leloup_gonze_goldbeter_1999_a.cellml
http://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/7606a47e222bc3b3d9117baa08d2e7246d67eedd/leloup_gonze_goldbeter_1999_a.cellml

12 </listOfSimulations>
13 <listOfModels>
14 <model id="model1" name="Circadian Oscillations" language="urn:sedml:language:cellml" source="http://

models.cellml.org/workspace/leloup_gonze_goldbeter_1999/@@rawfile/7606
a47e222bc3b3d9117baa08d2e7246d67eedd/leloup_gonze_goldbeter_1999_a.cellml"/>

15 <model id="model2" name="Circadian Chaos" language="urn:sedml:language:cellml" source="model1">
16 <listOfChanges>
17 <changeAttribute target="/cellml:model/cellml:component[@name=’MT’]/cellml:variable[@name=’vmT’]/

@initial_value" newValue="0.28"/>
18 <changeAttribute target="/cellml:model/cellml:component[@name=’T2’]/cellml:variable[@name=’vdT’]/

@initial_value" newValue="4.8"/>
19 </listOfChanges>
20 </model>
21 </listOfModels>
22

23 <listOfTasks>
24 <task id="task1" name="Limit Cycle" modelReference="model1" simulationReference="simulation1"/>
25 <task id="task2" name="Strange attractors" modelReference="model2" simulationReference="simulation1"/

>
26 </listOfTasks>
27 <listOfDataGenerators>
28 <dataGenerator id="time" name="time">
29 <listOfVariables>
30 <variable id="t" taskReference="task1" target="/cellml:model/cellml:component[@name=’environment

’]/cellml:variable[@name=’time’]" />
31 </listOfVariables>
32 <math:math>
33 <math:ci>t</math:ci>
34 </math:math>
35 </dataGenerator>
36

37 <dataGenerator id="tim1" name="tim mRNA">
38 <listOfVariables>
39 <variable id="v0" taskReference="task1" target="/cellml:model/cellml:component[@name=’MT’]/

cellml:variable[@name=’MT’]" />
40 </listOfVariables>
41 <math:math>
42 <math:ci>v0</math:ci>
43 </math:math>
44 </dataGenerator>
45

46 <dataGenerator id="per_tim" name="nuclear PER-TIM complex">
47 <listOfVariables>
48 <variable id="v1" taskReference="task1" target="/cellml:model/cellml:component[@name=’CN’]/

cellml:variable[@name=’CN’]" />
49 </listOfVariables>
50 <math:math>
51 <math:ci>v1</math:ci>
52 </math:math>
53 </dataGenerator>
54

55 <dataGenerator id="tim2" name="tim mRNA (changed parameters)">
56 <listOfVariables>
57 <variable id="v2" taskReference="task2" target="/cellml:model/cellml:component[@name=’MT’]/

cellml:variable[@name=’MT’]" />
58 </listOfVariables>
59 <math:math>
60 <math:ci>v2</math:ci>
61 </math:math>
62 </dataGenerator>
63

64 <dataGenerator id="per_tim2" name="nuclear PER-TIM complex">
65 <listOfVariables>
66 <variable id="v3" taskReference="task2" target="/cellml:model/cellml:component[@name=’CN’]/

cellml:variable[@name=’CN’]" />
67 </listOfVariables>
68 <math:math>
69 <math:ci>v3</math:ci>
70 </math:math>
71 </dataGenerator>
72 </listOfDataGenerators>
73

74 <listOfOutputs>
75 <plot2D id="plot1" name="tim mRNA with Oscillation and Chaos">
76 <listOfCurves>
77 <curve id="c1" logX="false" logY="false" xDataReference="time" yDataReference="tim1" />
78 <curve id="c2" logX="false" logY="false" xDataReference="time" yDataReference="tim2" />
79 </listOfCurves>
80 </plot2D>
81 <plot2D id="plot2" name="tim mRNA limit cycle (Oscillation)">
82 <listOfCurves>
83 <curve id="c3" logX="false" logY="false" xDataReference="per_tim" yDataReference="tim1" />
84 </listOfCurves>
85 </plot2D>
86 <plot2D id="plot3" name="tim mRNA limit cycle (chaos)">
87 <listOfCurves>
88 <curve id="c4" logX="false" logY="false" xDataReference="per_tim2" yDataReference="tim2" />
89 </listOfCurves>
90 </plot2D>

71

91 </listOfOutputs>
92 </sedML>

Listing C.2: LeLoup Model Simulation Description in SED-ML

72

C.3 The IkappaB-NF-kappaB signaling module (SBML)

The following example provides a SED-ML description for the simulation of the IkappaB-NF-kappaB
signaling module based on the publication by Hoffmann, Levchenko, Scott and Baltimore “The IkappaB-
NF-kappaB signaling module: temporal control and selective gene activation. ” (PubMed ID: 12424381)

This model is referenced by its SED-ML ID model1 and refers to the model with the MIRIAM URN urn:
miriam:biomodels.db:BIOMD0000000140. Software applications interpreting this example know how to
dereference this URN and access the model in BioModels Database [Le Novère et al., 2006].

The simulation description specifies one simulation simulation1, which is a uniform timecourse simula-
tion that simulates the model for 41 hours. task1 then applies this simulation to the model.

As output this simulation description collects four parameters: Total NFkBn, Total IkBbeta, Total IkBeps
and Total IkBalpha. These variables are to be plotted against the simulation time and displayed in four
separate plots, as shown in Figure C.3.

BM140 Total_NFkBn

0 500 1000 1500 2000 2500
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Total_NFkBn

BM140 Total_IkBbeta

0 500 1000 1500 2000 2500
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Total_IkBbeta

BM140 Total_IkBeps

0 500 1000 1500 2000 2500
0.000

0.005

0.010

0.015

0.020

0.025
Total_IkBeps

BM140 Total_IkBalpha

0 500 1000 1500 2000 2500
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Total_IkBalpha

Figure C.3: The simulation result gained from the simulation description given in listing C.3

The SED-ML description of the simulation experiment is given in listing C.3.
1 <?xml version="1.0" encoding="utf-8"?>
2 <sedML xmlns="http://sed-ml.org/" level="1" version="1">
3 <listOfSimulations>
4 <uniformTimeCourse id="simulation1"
5 initialTime="0" outputStartTime="0" outputEndTime="2500"
6 numberOfPoints="1000" >
7 <algorithm kisaoID="KISAO:0000019"/>
8 </uniformTimeCourse>
9 </listOfSimulations>
10 <listOfModels>
11 <model id="model1" language="urn:sedml:language:sbml" source="urn:miriam:biomodels.db:BIOMD0000000140

"/>
12 </listOfModels>
13 <listOfTasks>
14 <task id="task1" modelReference="model1"
15 simulationReference="simulation1"/>
16 </listOfTasks>
17 <listOfDataGenerators>
18 <dataGenerator id="time" name="time">
19 <listOfVariables>
20 <variable id="time1" taskReference="task1" symbol="urn:sedml:symbol:time"/>
21 </listOfVariables>
22 <math xmlns="http://www.w3.org/1998/Math/MathML">

73

urn:miriam:biomodels.db:BIOMD0000000140
urn:miriam:biomodels.db:BIOMD0000000140

23 <ci>time1</ci>
24 </math>
25 </dataGenerator>
26 <dataGenerator id="Total_NFkBn" name="Total_NFkBn">
27 <listOfVariables>
28 <variable id="Total_NFkBn1" taskReference="task1"
29 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’Total_NFkBn ’]"/>
30 </listOfVariables>
31 <math xmlns="http://www.w3.org/1998/Math/MathML">
32 <ci>Total_NFkBn1</ci>
33 </math>
34 </dataGenerator>
35 <dataGenerator id="Total_IkBbeta" name="Total_IkBbeta">
36 <listOfVariables>
37 <variable id="Total_IkBbeta1" taskReference="task1"
38 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’Total_IkBbeta ’]" />
39 </listOfVariables>
40 <math xmlns="http://www.w3.org/1998/Math/MathML">
41 <ci>Total_IkBbeta1</ci>
42 </math>
43 </dataGenerator>
44 <dataGenerator id="Total_IkBeps" name="Total_IkBeps">
45 <listOfVariables>
46 <variable id="Total_IkBeps1" taskReference="task1"
47 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’Total_IkBeps ’]" />
48 </listOfVariables>
49 <math xmlns="http://www.w3.org/1998/Math/MathML">
50 <ci>Total_IkBeps1</ci>
51 </math>
52 </dataGenerator>
53 <dataGenerator id="Total_IkBalpha" name="Total_IkBalpha">
54 <listOfVariables>
55 <variable id="Total_IkBalpha1" taskReference="task1"
56 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id=’Total_IkBalpha ’]" />
57 </listOfVariables>
58 <math xmlns="http://www.w3.org/1998/Math/MathML">
59 <ci>Total_IkBalpha1</ci>
60 </math>
61 </dataGenerator>
62 </listOfDataGenerators>
63 <listOfOutputs>
64 <plot2D id="plot1" name="BM140 Total_NFkBn">
65 <listOfCurves>
66 <curve id="c1" logX="false" logY="false" xDataReference="time"
67 yDataReference="Total_NFkBn" />
68 </listOfCurves>
69 </plot2D>
70 <plot2D id="plot2" name="BM140 Total_IkBbeta">
71 <listOfCurves>
72 <curve id="c2" logX="false" logY="false" xDataReference="time"
73 yDataReference="Total_IkBbeta" />
74 </listOfCurves>
75 </plot2D>
76 <plot2D id="plot3" name="BM140 Total_IkBeps">
77 <listOfCurves>
78 <curve id="c3" logX="false" logY="false" xDataReference="time"
79 yDataReference="Total_IkBeps" />
80 </listOfCurves>
81 </plot2D>
82 <plot2D id="plot4" name="BM140 Total_IkBalpha">
83 <listOfCurves>
84 <curve id="c4" logX="false" logY="false" xDataReference="time"
85 yDataReference="Total_IkBalpha" />
86 </listOfCurves>
87 </plot2D>
88 </listOfOutputs>
89 </sedML>

Listing C.3: IkappaB-NF-kappaB signaling Model Simulation Description in SED-ML

74

D. SED-ML archive

A SED-ML archive is self-contained repository of all the resources necessary to run a simulation and
display its output. It is a convenient alternative if a model source URI cannot be resolved, or if an
end-user is offline.

A SED-ML archive is zipped folder containing one SED-ML file and any number of model files. By
convention, the name of the archive will be the name of the SED-ML file contained in the archive, with
the suffix “.sedx”. Each model file contained in the archive is referred to by a relative URI in the source
attribute of the SED-ML document’s model element.

For example, the contents of an archive, when unzipped, may be as follows:

Name of archive: Mysedml.sedx
Contents:

Mysedml.xml

model1.xml

model2.xml

Listing D.1 shows how a model would be referenced in the SED-ML file Mysedml.xml in the above
example.

Future versions of SED-ML may expand the permitted contents of an archive to include experimental
data files or other resources.

1 <listOfModels>
2 <model id="m0001" language="urn:sedml:language:sbml"
3 source="model1.xml">
4 <listOfChanges>
5 <change>
6 [MODEL PRE-PROCESSING]
7 </change>
8 </listOfChanges>
9 </model>
10 </listOfModels>

Listing D.1: Usage of relative URIs to reference a model in a SED-ML archive

While the SED-ML archive is not normative it is supported in currently available implementations
of SED-ML such as LibSedML (http://libsedml.sf.net) and jlibsedml (http://sf.net/projects/
jlibsedml).

75

http://libsedml.sf.net
http://sf.net/projects/jlibsedml
http://sf.net/projects/jlibsedml

Bibliography

D. A. Beard, R. Britten, M. T. Cooling, A. Garny, M. D. Halstead, P. J. Hunter, J. Lawson, C. M. Lloyd,
J. Marsh, A. Miller, D. P. Nickerson, P. M. Nielsen, T. Nomura, S. Subramanium, S. M. Wimalaratne,
and T. Yu. CellML metadata standards, associated tools and repositories. Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences, 367(1895):1845–1867, May 2009. ISSN
1364-503X. doi: 10.1098/rsta.2008.0310.

D. Bell. UML basics, Part III: The class diagram. IBM, the rational edge, 2003. http://download.
boulder.ibm.com/ibmdl/pub/software/dw/rationaledge/nov03/t_modelinguml_db.pdf.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax, 2005.
URL http://www.ietf.org/rfc/rfc3986.txt.

T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, and J. Cowan. Extensible Markup
Language (XML) 1.1 (Second Edition), 2006. URL http://www.w3.org/TR/xml11/.

Business Process Technology group. BPMN – business process modeling notation. poster, 2009. URL
http://bpt.hpi.uni-potsdam.de/Public/BPMNCorner.

D. Carlisle, P. Ion, R. Miner, and N. Poppelier. Mathematical Markup Language (MathML) version 2.0.
W3C Recommendation, 21, 2001.

J. Clarke and S. DeRose. XML Path Language (XPath) Version 1.0, 1999. URL http://www.w3.org/
TR/xpath/.

Melanie Courtot, N. Juty, Christian Knüpfer, D. Waltemath, A. Dräger, A. andFinney, M. Golebiewski,
S. Hoops, S. Keating, D.B. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes,
M. Pocock, N. Rodriguez, A. Villeger, S. Wimalaratne, C. Laibe, M. Hucka, and N. Le Novère.
Controlled vocabularies and semantics in systems biology. 2011.

J.O. Dada, I. Spasić, N.W. Paton, and P. Mendes. SBRML: a markup language for associating systems
biology data with models. Bioinformatics (Oxford, England), 26(7):932–938, April 2010. ISSN 1367-
4811. doi: 10.1093/bioinformatics/btq069.

M.B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 403
(6767):335–338, January 2000.

D.C. Fallside, P. Walmsley, et al. XML schema part 0: Primer. W3C recommendation, 2, 2001.

N. Goddard, M. Hucka, F. Howell, H. Cornelis, K. Skankar, and D. Beeman. Towards NeuroML: Model
Description Methods for Collaborative Modeling in Neuroscience. Phil. Trans. Royal Society series B,
356:1209–1228, 2001.

S. Hoops, S. Sahle, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer. COPASI
- a COmplex PAthway SImulator. Bioinformatics (Oxford, England), 22(24):3067–3074, December
2006. ISSN 1460-2059. doi: 10.1093/bioinformatics/btl485.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Goryanin,
W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger, A. Kremling,
U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama,
M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence,
J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models. Bioinformatics,
19(4):524–531, March 2003. ISSN 1367-4803. doi: 10.1093/bioinformatics/btg015.

76

http://download.boulder.ibm.com/ibmdl/pub/software/dw/rationaledge/nov03/t_modelinguml_db.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/rationaledge/nov03/t_modelinguml_db.pdf
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3.org/TR/xml11/
http://bpt.hpi.uni-potsdam.de/Public/BPMNCorner
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/

M. Hucka, F.T. Bergmann, S. Hoops, S. Keating, S. Sahle, and D.J. Wilkinson. The Systems Biology
Markup Language (SBML): Language Specification for Level 3 Version 1 Core (Release 1 Candidate).
Nature Precedings, January 2010. ISSN 1756-0357. doi: 10.1038/npre.2010.4123.1.

N. Le Novère, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro,
M. Schilstra, B. Shapiro, J. L. Snoep, and M. Hucka. BioModels Database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids
Res, 34(Database issue), January 2006. ISSN 1362-4962.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry, M. Stefan,
J. Snoep, M. Hucka, N. Le Novère, and C. Laibe. BioModels Database: An enhanced, curated and
annotated resource for published quantitative kinetic models. BMC Systems Biology, 4(1):92+, June
2010. ISSN 1752-0509. doi: 10.1186/1752-0509-4-92.

C.M. Lloyd, M.D.B. Halstead, and P.F. Nielsen. CellML: its future, present and past. Prog Biophys Mol
Biol, 85:433–450, 2004.

C.M. Lloyd, J.R. Lawson, P.J. Hunter, and P.F. Nielsen. The CellML model repository. Bioinformatics,
24(18):2122, 2008.

OMG. UML 2.2 Superstructure and Infrastructure, February 2009. URL http://www.omg.org/spec/
UML/2.2/.

S. Pemberton et al. XHTML 1.0: The Extensible HyperText Markup Language—W3C Recommendation
26 January 2000. World Wide Web Consortium (W3C)(August 2002), 2002.

W3C. XML Schema Part 1: Structures Second Edition. W3C Recommendation, October 2004. URL
http://www.w3.org/TR/xmlschema-1/.

D. Waltemath, R. Adams, D.A. Beard, F.T. Bergmann, U.S. Bhalla, R. Britten, V. Chelliah, M.T.
Cooling, J. Cooper, E. Crampin, A. Garny, S. Hoops, M. Hucka, P. Hunter, E. Klipp, C. Laibe,
A. Miller, I. Moraru, D. Nickerson, P. Nielsen, M. Nikolski, S. Sahle, H. Sauro, H. Schmidt, J.L. Snoep,
D. Tolle, O. Wolkenhauer, and N. Le Novère. Minimum information about a simulation experiment
(MIASE). PLoS Comput Biol, page in the press, 2011.

S.A. White et al. Business process modeling notation (BPMN) version 1.0. Business Process Management
Initiative, BPMI. org, 2004.

77

http://www.omg.org/spec/UML/2.2/
http://www.omg.org/spec/UML/2.2/
http://www.w3.org/TR/xmlschema-1/

	Introduction
	Motivation: A sample experiment
	A simple time-course simulation
	Applying pre-processing
	Applying post-processing

	Overview of SED-ML
	Conventions
	Models
	Simulation setup
	Task
	Output
	Data Generator

	SED-ML technical specification
	Conventions used in this document
	UML Classes
	UML Relationships
	XML Schema language elements
	Type extensions

	Concepts used in SED-ML
	MathML subset
	URI Scheme
	XPath usage
	KiSAO
	SED-ML resources

	General attributes and classes
	id
	name
	SEDBase
	SED-ML top level element
	Reference relations
	Variable
	Parameter
	ListOf* containers

	SED-ML Components
	Model
	Change
	Simulation
	Task
	DataGenerator
	Output
	Output components

	Acknowledgements
	SED-ML UML Overview
	XML Schema
	Examples
	Le Loup Model (SBML)
	Le Loup Model (CellML)
	The IkappaB-NF-kappaB signaling module (SBML)

	SED-ML archive

