Simulation Experiment Description
Markup Language (SED-ML) :
Level 1 Version 4

September 28, 2021

Editors
Lucian Smith University of Washington, USA
Frank T Bergmann BioQUANT/COS, Heidelberg University, Germany
Alan Garny Auckland Bioengineering Institute, New Zealand
Tomas Helikar Unwversity of Nebraska-Lincoln, USA
Jonathan Karr Icahn School of Medicine at Mount Sinai, USA
David Nickerson Auckland Bioengineering Institute, New Zealand
Herbert Sauro University of Washington, USA
Dagmar Waltemath University of Greifswald, Germany
Matthias Konig Humboldt University of Berlin, Germany

To find the most up to date information about SED-ML, including links to published
SED-ML files, examples, and supporting software, please visit
https://sed-ml.org/

The latest release of the Level 1 Version 4 specification is available at
https://identifiers.org/combine.specifications/sed-ml.level-1.version-4

To discuss SED-ML and the SED-ML specification write to the mailing list
sed-ml-discuss@googlegroups.com.

To contact the SED-ML editors write to sed-ml-editors@googlegroups.com.

ML

https://sed-ml.org/
https://identifiers.org/combine.specifications/sed-ml.level-1.version-4
mailto:sed-ml-discuss@googlegroups.com
mailto:sed-ml-editors@googlegroups.com

1 Introduction

1.1
1.2

1.0.1 Color conventions in this document L e
SED-ML overview o . 0 o e e e e e e e e e e e e e e e
Example simulation experiment L e e
1.2.1 Time-course simulation L L e
1.2.2 Applying pre-processingttt e e e e e e e e e e e
1.2.3 Applying post-processingo e e e e e e e e

2 SED-ML technical specification
2.1 General data types, attributes and classes L Lo L o
Primitive data types

2.2

2.1.1

2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.1.8

2.1.9

2.1.10

2.2.1

2.2.2
2.2.3

2.2.4
2.2.5

2.1.1.1
2.1.1.2
2.1.1.3
2.1.14
2.1.1.5
2.1.1.6
2.1.1.7
2.1.1.8
2.1.1.9
2.1.1.10
2.1.1.11
2.1.1.12
2.1.1.13
2.1.1.14
2.1.1.15
2.1.1.16
2.1.1.17
2.1.1.18
2.1.1.19
SEDBase
Notes

ID

XPath . . .
MathML . .
anyURI . .
URN
NuMLSId . .
NuMLSIdRef
CurveType
SurfaceType
LineType .
SedColor .
MarkerType
MappingType

ExperimentType i i i e e e e e e e e e e e e e

AxisType .
ScaleType

Annotation
Parameter

Variabl

e ...,

AppliedDimension .
Calculation

2.1.8.1

Math

General attributes and elements

2.1.9.1
2.1.9.2

2.1.10.1

2.2.1.1
2.2.1.2
2.2.1.3
2214
2.2.1.5
2.2.1.6
2.2.1.7
2.2.1.8
2.2.1.9
2.2.1.10
2.2.1.11

kisaolD . .

listOf* containers e e e e e e e e e e e
Reference relations .
modelReference e
2.1.10.2 simulationReference e
2.1.10.3 taskReference e e e
SED-ML Components . . .
SED-ML top level element L

xmlns . . .
level . . .
version . .
listOfDataD
listOfModel
listOfSimul
listOfTasks

escriptions e e e e e
S e e e e e e e e e e e e e e
Ations e e e e e e e e e e

listOfDataGenerators v v v v e e e e e e e e e e e e e e e e e e
ListOfOutputs o o e e e e e e e e e e e e e e

listOfStyle
listOfAlgor

DataDescription . .
DataDescription components Lo oo o oo e e

2.2.3.1
2.2.3.2
2.2.3.3
Model

Change
2.2.5.1
2.2.5.2
2.2.5.3
2.2.54

DimensionDe
DataSource
Slice . ..

NewXML . .
AddXML . .
ChangeXML
RemoveXML

S e e e
ithmParameters (global)

SCription L. L e e e e e e e e

3.1

3.2

2.2.5.5 ChangeAttribute L e

2.2.5.6 ComputeChange o i i i it e e e e e e
2.2.6 Simulation oL e e
2.2.6.1 UniformTimeCourse v i ittt e e e e e
2.2.6.2 0NeSTED . . . vt e e e e e e e e e e e e e e
2.2.6.3 SteadyState e e e e e e e e e e e
2.2.6.4 Analysiso e
2.2.7 Simulation componentsl e e e e e e e e
2.2.7.1 Algorithm e e e e e e e e e e
2.2.7.2 AlgorithmParametert i it e e e e e e e e
2.2.8 AbstractTask L e e e e e e e e
2.2.8.1 Task
2.2.8.2 Repeated Task e e e
2.2.9 Task components e e e e e e e e e e e e e
2.2.9.1 SubTask L e e e e e
2.2.9.2 SetValue i i i e
2.2.9.3 RaANGeo e e e e
2.2.10 ParameterEstimationTask L. e e
2.2.10.1 Objective e e e e e e
2.2.10.2 LeastSquareObjectiveFunction
2.2.10.3 AdjustableParameter it i e e e e e e e
2.2.10.4 Boundso o e e e
2.2.10.5 ExperimentReference L. e
2.2.10.6 FitExperiment i e e e e e e e e e e e e e e
2.2.10.7 FitMapping o o i e e e e e e e e
2.2.11 DataGenerator v i it e e e e e e e e e e e e e e e e e e
2.2.12 OULPUL o e e e e e e e e e e e e e e e e e e
2.2.12.1 Plot o e e e e e
2.2.12.2 PLOt2D . . . o e e e e e e e e e e e e
2.2.12.3 P1ot3D e e e e e e e e e e
2.2.12.4 AXIS . . . L e e e e e e e e e e e
2.2.12.5 AbstractCurve i e e e e e e e
2.2.12.6 CUIVE ot e e e e e e e e e e e e e e e e e
2.2.12.7 ShadedArea L. e e e e e e
2.2.12.8 Surfaceo Lo e
2213 REPOTT . . v v v v v i ittt e e e e e e e e e
2.2.13.1 DataSet oo e e
2.2.14 ParameterEstimationReport i i i i e e e e e e e e e e e
2215 Figure o v v ittt e e e e e e e e e e e
2.2.15.1 SUbPlot oL e e e
2.2.16 ParameterEstimationResultPlotot
2.2.17 WaterfallPlot e e e e e e e e e e e e e
2.2.18 Style . .o e e e
2.2.18.1 LINe . . o v v i o e e e e e e e e e e
2.2.18.2 Marker e
2.2.18.3 Fill o e e e e e e e
3 Concepts used in SED-ML
MathML o e e e e e e
3.1.1 MathML elements e e e e e e e e e e
3.1.2 MathML symbols o e e e e e
3.1.2.1 MathML csymbols for dimensional input
3.1.2.2 MathML Distribution Functions
3.1.3 NA values L e e e e
URI scheme e e e e e e e e e e
3.2.1 Model references L e
3.2.2 Datareferences e e e e e e e e
3.2.3 Symbols . . . oL e e
3.2.4 Annotation Scheme e e e
URN scheme e e e e e e e
3.3.1 Language references L L L e
3.3.2 Data format references e e e e e e e
3.3.2.1 NuML (Numerical Markup Language)o oo
3.3.2.2 CSV (Comma Separated Values)
3.3.2.3 TSV (Tab Separated Values)
3.3.2.4 HDF5 (Hierarchical Data Format version 5)
XPath e e e e e e
NuML . . e e
KiSAO . . e e e

36
37
38
39
40
40
40
41
41
41
42
43
43
46
46
46
47
49
51
51
51
52
52
53
53
54
55
56
57
57
57
59

61
61
63
63
64
64
65
66
67
67
68
68
69

70
70
70
70
70
71
72
73
73
73
73
74
74
74
74
74
75
76
77
77
78
78

3.7 COMBINE archive e e e e e 78

3.8 SED-ML IesoUrces . . .« v v v v v vt e e e e e e e e e e e e e e 78
Acknowledgements 79
Examples 80
A.1 Example simulation experiment (L1V3_repressilator.omex) 80
A.2 Simulation experiments with dataDescriptions oL o000, 83
A.2.1 Plotting data with simulations (L1V3_plotting-data-numl.omex) 83
A.3 Simulation experiments with repeatedTasks L oL L L L. 85
A.3.1 Time course parameter scan (L1V3_repeated-scan-oscli.omex) 85
A.3.2 Steady state parameter scan (L1V3_repeated-steady-scan-oscli.omex) 86
A.3.3 Stochastic simulation (L1V3_repeated-stochastic-runs.omex). 88
A.3.4 Simulation perturbation (L1V3_oscli-nested-pulse.omex) 89
A.3.5 2D steady state parameter scan (L1V3_parameter-scan-2d.omex) 1
A.4 Simulation experiments with different model languages 95
A.4.1 Van der Pol oscillator in SBML (L1V3_vanderpol-sbml.omex) 95
A.4.2 Van der Pol oscillator in CellML (L1V3_vanderpol-cellml.omex) 97
A.5 Reproducing publication results Lo 100
A.5.1 Le Loup model (L1V3_leloup-sbhml.omex) 100
A.5.2 TkappaB signaling (L1V3_ikkapab.omex) 102
Validation 104
B.1 Validation of SED-ML documents e 104
B.1.1 Validation and consistency rules L oL Lo 104

1.0.1

1.1

1. Introduction

The Simulation Experiment Description Markup Language (SED-ML) is an XML-based format for de-
scribing simulation experiments, including model changes, calibrations, simulations, analyses, and com-
putations and visualizations of simulation results.

The number of computational models of biological systems is growing at an ever increasing pace. At
the same time, their size and complexity are also increasing. It is now generally accepted that one
must be able to exchange the mathematical structure of such models, for instance to build on existing
studies by reusing models or to reproduce model results. The efforts to standardize the representation of
computational models in various areas of biology, such as the Systems Biology Markup Language (SBML)
[16], CellML [9] or NeuroML [13], resulted in an increase of the exchange and re-use of models. However,
the description of models is not sufficient to reproduce, reuse, and combine simulation experiments and
their results. One also needs to describe the procedures the models are subjected to, i.e., the information
required to reproduce simulation experiments among users and software tools. The increasing use of
computational simulation experiments to inform modern biological research creates new challenges to
reproduce, annotate, archive, and share such experiments.

SED-ML is a computer-readable exchange format for describing simulation experiments. Critically,
SED-ML can be used with a wide range of model formats, modeling frameworks, simulation algorithms,
and simulation tools. For many simulation experiments, SED-ML can capture the information in the
Minimum Information About a Simulation Experiment (MIASE) [22] guidelines.

SED-ML is developed as a community project and defined via this technical specification and a corre-
sponding XML Schema.

This document describes Level 1 Version 4 of SED-ML, which is the successor of Level 1 Version 3 and
Level 1 Version 1 (described in [23]).

Color conventions in this document

Throughout this document, we use coloring to carry additional information for the benefit of those
viewing the document on media that can display color:

e We use a red color in text and a dark blue color in figures to indicate changes between this version
of the specification, namely SED-ML Level 1 Version 4, and the most recent previous release of
the specification (which, for the present case, is SED-ML Level 1 Version 3). The changes may
be either additions or deletions of text; in the case of deletions, entire sentences, paragraphs or
sections are colored to indicate a change has occurred inside them. In UML diagrams, blue text
and/or lines are used to indicate semantic changes or additions.

e We use a blue color in text to indicate a hyperlink from one point in this document to another.
When viewed in electronic form, clicking on blue-colored text will cause a jump to the section,
figure, table or page to which the link refers.

SED-ML overview
SED-ML specifies for a given simulation experiment
e which datasets to use (DataDescription);

e which models to use (Model);

1.2

e which modifications to apply to models before simulation or other analyses (Change);

e which simulation, model calibration, or other analysis procedures to run on each model (Simulation
and AbstractTask);

e how to post-process the results of these simulations and analysis (DataGenerator); and
e how these results should be presented and exported as figures and tables (Output).
A SED-ML document contains the following main objects to describe this information: DataDescription,

Model, Change, Simulation, AbstractTask, DataGenerator, and Output.

DataDescription

The DataDescription class enables investigators to specify datasets for a simulation experiment. Such
data can be used for instance to parameterize model simulations or to plot data together with simulation
results.

Model

The Model class enables investigators to describe the models involved in a simulation experiment.

The Change class enables investigators to describe how models should be modified (pre-processing), e.g.,
changing the value of a parameter, or general changes on any element of the model representation that
is addressable by an unambiguous target, such as an XPath expression for an entity in an XML-encoded
model, e.g., substituting one element of an XML description of a model for another.

Simulation

The Simulation class enables investigators to describe the settings required for each simulation and
analysis. These includes information such as the type of each simulation/analysis, the algorithm required
to execute the simulation/analysis, and the algorithm parameters that the simulation/analysis should
be executed with.

AbstractTask

SED-ML uses the AbstractTask class to specify which Simulation or FitExperiment to run with which
Model.

DataGenerator

The DataGenerator class enables investigators to encode post-processing of simulation/analysis results
before the generation of outputs, e.g., one can normalize the result of an observable, or calculate the
mean of several observables. In the definition of a DataGenerator, any addressable variable or parameter
of any model or DataSource may be referenced, and used to calculate new values using MathML.

Output

The Output class enables investigators to describe how post-processing simulation results should be
exported, such as with two dimensional plots (Plot2D), three dimensional plots (Plot3D), and data
tables (Report).

Detailed technical information about these classes is available in Chapter 2.

Example simulation experiment

This section illustrates an example simulation experiment for the repressilator model [10]. The corre-
sponding SED-ML is listed in Appendix A.1. A COMBINE archive for this simulation experiment is
available as L1V3_repressilator.omex at https://sed-ml.org/.

Additional example SED-ML files are available in Appendix A. Numerous complete examples with model
files are available as COMBINE archives at https://sed-ml.org/.

The repressilator is a synthetic oscillating network of transcription regulators in Escherichia coli. The
network is composed of the three repressor genes Lactose Operon Repressor (lacI), Tetracycline Re-
pressor (tetR) and Repressor CI (cI), which code for proteins binding to the promoter of the other,

https://sed-ml.org/
https://sed-ml.org/

blocking their transcription. The three inhibitions form a cyclic negative-feedback loop. To describe the
interactions of the molecular species involved in the network, the authors built a simple mathematical
model of coupled first-order differential equations. All six molecular species included in the network
(three mRNAs, three repressor proteins) participate in creation (transcription/translation) and degrada-
tion processes. The model was used to determine the influence of the various parameters on the dynamic
behavior of the system. In particular, parameter values were sought which induce stable oscillations in
the concentrations of the system components.

1.2.1 Time-course simulation

Figure 1lc of the reference publication [10] (reproduced with SED-ML in Figure 1.1 and Figure 1.2)
reported the following simulation.

2500

2000

1500

1000

1.

0 200 400 600 800 1000

Import the repressilator model identified by the Unified Resource Identifier (URI) [3]
https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOOOOOO127?filename=BIOMDOOOOOOOO12_

url.xml.
Select a method for ODE numerical integration (CVODE, KISA0:0000019).
Run a uniform time course simulation for 1000 min, recording output each minute.

Plot the amount of lacI, tetR and cI against time in a 2D plot.

se of repr il)

—— dg_0_1_1 (PZ (cl))
—— dg_0_0_1 (PX (lacl))

—— dg_0_2_1 (PY (tetR)) \‘"“
|

2000 [
1500 M A

1000

& 500
I~

0 200 400 600 800 1000
dg_0_0_0 (taskl.time)

PX (lacl) PZ (cl) PY (tetR)

Figure 1.2: Time-course simulation of
the repressilator depicting repressor pro-
teins lacl, tetR and cl. Simulation with
tellurium [6].

Figure 1.1: Time-course simulation of
the repressilator depicting repressor pro-
teins lacl, tetR and cl. Simulation with
SED-ML web tools [2].

1.2.2 Applying pre-processing

A common step in a simulation experiment is the modification of model parameters before simulation.
When changing the parameter values for the protein copies per promoter, tps_repr, and the leakiness
in protein copies per promoter, tps_active, as illustrated below, the system’s behavior switches from
sustained oscillations to damped oscillations (Figure 1.3 on the following page and Figure 1.4 on the next

page).

1.

> oA e W

Import the model as in Section 1.2.1 above.

Change the value of the parameter tps_repr from 0.0005 to 1.3e-05.
Change the value of the parameter tps_active from 0.5 to 0.013.
Select the same ODE integration method (CVODE).

Run a uniform time course for 1000 min, recording output each minute.

Plot the amount of lacI, tetR and cI against time in a 2D plot.

https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml
https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml

1.2.3

prepr ing (Til se after pre-pr ing)
dg_1.1_1 (PZ (cl))
300 —— dg_1_0_1 (PX (lacl))
300 —— dg_1_2_1 (PY (tetR))

250
200
150

100

50 /\ \/ﬁ \ N s)
J

0 200 400 600 800 1000

PX (lacl) PZ (cl) PY (tetR) 0 200 400 600 800 1000
dg_1_0_0 (time)

Figure 1.3: Time-course simulation of Figure 1.4: Time-course simulation of
the repressilator after changing param- the repressilator after chan.gmg param-
eters tps_repr and tps.active. Simula- eters tps.repr and tps.active. Simula-
tion with SED-ML web tools [2]. tion with tellurium [0].

Applying post-processing

In a simulation experiment, the raw numerical output of simulations must often be post-processed before
plotting or reporting. Normalized plots (Figure 1.5 and Figure 1.6) of the results of the first simulation
(Section 1.2.1), which highlights the influence of the variables on each other (in phase-plane), can be
constructed as follows:

(Please note that the description steps 1 - 4 remain as in Section 1.2.1 above.)

5. Collect lacI(t), tetR(t) and cI(t).

6. Compute the greatest value for each of the repressor proteins, max(lacI(t)), max(tetR(t)),
max(cI(t)).

7. Normalize the data for each of the repressor proteins by dividing each time point by its maximum
value, i.e., lacI(t)/max(lacI(t)), tetR(t)/max(tetR(t)), and cI(t)/max(cI(t)).

8. Plot the normalized lacI protein as a function of the normalized cI, the normalized cI as a
function of the normalized tetR protein, and the normalized tetR protein against the normalized
lacI protein in a 2D plot.

1 postprocessing (Timecourse after post-processing)

—— dg_2_0_0 (PX/max(PX) (lacl normalized)) |
—— dg_2_0_1 (PZ/max(PZ) (cl normalized))
—— dg_2_1_0 (PY/max(PY) (tetR normalized))

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

PZ/max(PZ) (cl normalized) PX/max(PX) (lacl normalized) 0.0

PY/max(PY) (tetR normalized) 0.0 0.2 0.4 0.6 0.8 1.0

Figure 1.6: Time-course simulation of
the repressilator. Normalized lacI, tetR
and cI in phase-plane. Simulation with
tellurium [6].

Figure 1.5: Time-course simulation of
the repressilator. Normalized lacI, tetR
and cI in phase-plane. Simulation with
SED-ML web tools [2].

2.1

211

2.1.1.1

2.1.1.2

2. SED-ML technical specification

This document is the technical specification of SED-ML Level 1 Version 4. The corresponding UML
class diagrams are included throughout this document.. Please note, the UML diagrams do not cap-
ture all concepts of SED-ML. Example simulation experiments encoded with SED-ML are provided in
Appendix A. Complete examples with model files are available at https://sed-ml.org/.

General data types, attributes and classes

This section introduces concepts used repeatedly throughout the specification of SED-ML. This includes
primitive data types, classes (SEDBase, Notes, Annotation, Parameter, Variable), attributes, and refer-
ence relations.
The main SED-ML components based on these general data types, attributes and classes are described
in Section 2.2.

Primitive data types

Primitive data types comprise the set of data types used in SED-ML classes. Most primitive types in
SED-ML are taken from the data types defined in XML Schema 1.0, including string, boolean, int,
positiveInteger, double and XML.

A few additional primitive types are defined by SED-ML itself: ID, SId, SIdRef, TargetType, XPath,
MathML, anyURI, URN, NuMLSId, and NuMLSIdRef.

Type ID

The XML Schema 1.0 type ID is identical to the XML 1.0 type ID. The literal representation of this type
consists of strings of characters restricted as summarized in Figure 2.1. For a detailed description see
the SBML specification on type ID [15].

letter | digit | . | - | > 7 | ’:7 | CombiningChar | Extender
(letter | > 7 | ’:’) NameChar*

NameChar
ID

Figure 2.1: The definition of the type ID. The characters (and) are used for grouping,
the character * indicates "zero or more times", and the character | indicates "or".
Please consult the XML 1.0 specification for the complete definitions of letter, digit,
CombiningChar, and Extender.

Type SId

The type SId is the type of the id attribute found on the majority of SED-ML components. SId is a
data type derived from string, but with restrictions about the characters permitted and the sequences
in which those characters may appear. The definition is shown in Figure 2.2 on the next page. For a
detailed description see the SBML specification on type SId [15].

https://sed-ml.org/

2.1.1.3

2.1.1.4

2.1.1.5

2.1.1.6

2.1.1.7

2.1.1.8

2.1.1.9

2.1.1.10

letter :: a’..’z’ ,’A ..’ 7’

digit = 707,79
idChar = letter | digit | ‘.’
SId ::= (letter | ’_’) idChar*

Figure 2.2: The definition of the type SId

Type SldRef

Type SIdRef is used for all attributes that refer to identifiers of type SId in a model. This type is derived
from SId, but with the restriction that the value of an attribute having type SIdRef must equal the value
of some SId attribute. In other words, a SIdRef value must be an existing identifier.

As with SId, the equality of SIdRef values is determined by exact character sequence match; i.e., com-
parisons of these identifiers must be performed in a case-sensitive manner.

Type TargetType

Type TargetType is used to identify elements of a model. This type is derived from type string, and it
is up to model languages to define how elements encoded in the language should be identified. For XML-
based languages, XPath must be used in conjuction with ChangeXML, AddXMTL, or RemoveXML. Model
languages are encouraged to provide clear documentation about how model elements can be identified.

Type XPath

Type XPath is derived from type TargetType and is used to identify nodes and attributes within an
XML representation of a model. XPath in SED-ML is an XPath version 1 expression which can be used
to unambiguously identify an element or attribute in an XML file. The concept of XPath is described
in Section 3.4. Note, model languages can choose to use XPath to identify abstract concepts implied by
models that are not defined in XML files, such as ‘the current value of the object corresponding to an
XML element within the state of a simulation run’.

Type MathML

Type MathML is used to describe mathematical expression in MathML. The concept of MathML and the
allowed subset of MathML on a MathML attribute is described in Section 3.1.

Type anyURI

Type anyURI is used in annotations and to reference model files, data files, and implicit model variables.
For a description of the uses of anyURI see Section 3.2. The notion of implicit variables is explained in
Section 3.2.3.

Type URN

Type URN is used to reference the model language and data description formats. It is derived from URI,
is defined by the Network Working Group RFCs 1737 and 2141, and consists of a colon-delimited string
beginning with “urn:”. For a description of the uses of URN see Section 3.3.

Type NuMLSId

The type NuMLSId is the type of the id attribute found on NuML components. NuMLSId is a data type
derived from SId, with the same restrictions about the characters permitted and the sequences in which
those characters may appear as SId. The concept of NuML is described in Section 3.5.

Type NuMLSIdRef

Type NuMLSIdRef is used for all attributes that refer to identifiers of type NuMLSId in a model. This type
is derived from NuMLSId, but with the restriction that the value of an attribute having type NuMLSIdRef
must equal the value of some NuMLSId attribute. In other words, a NuMLSIdRef value must be an existing
NuML identifier.

As with NuMLSId, the equality of NuMLSIdRef values is determined by exact character sequence match;

10

2.1.1.11

2.1.1.12

2.1.1.13

2.1.1.14

2.1.1.15

2.1.1.16

2.1.1.17

2.1.1.18

i.e., comparisons of these identifiers must be performed in a case-sensitive manner.

Type CurveType

The CurveType primitive data type is used in the definition of the Curve class. CurveType is derived from
type string and its values are restricted to being one of the following possibilities: “points”, “bar”,
“barStacked”, “horizontalBar”, and “horizontalBarStacked”. Attributes of type CurveType cannot
take on any other values. The meaning of these values is discussed in the context of the Curve class’s
definition in 2.2.12.6.

Type SurfaceType

The SurfaceType primitive data type is used in the definition of the Surface class. SurfaceType
is derived from type string and its values are restricted to being one of the following possibilities:
“parametricCurve”, “surfaceMesh”, “surfaceContour”, “contour”, “heatMap”, “stackedCurves”, and
“bar”. Attributes of type SurfaceType cannot take on any other values. The meaning of these values is
discussed in the context of the Surface class’s definition in 2.2.12.8.

Type LineType

The LineType primitive data type is used in the definition of the Line class. LineType is derived from
type string and its values are restricted to being one of the following possibilities: “none”, “solid”,
“dash”, “dot”, “dashDot”, and “dashDotDot”. Attributes of type LineType cannot take on any other
values. The meaning of these values is discussed in the context of the Line class’s definition in 2.2.18.1.

Type SedColor

The SedColor primitive data type is used in the definition of various children of the Style class. SedColor
is derived from type string and its values are allowed to be a six-character RGB hex value (where the
alpha is assumed to be 100%), or an eight-character RGBA hex value. For example, 808000FF would be
red and green 50.2%, blue 0%, and alpha 100%, i.e. a brown. Attributes of type SedColor cannot take
on any other values.

Type MarkerType

The MarkerType primitive data type is used in the definition of the Marker class. MarkerType is de-
rived from type string and its values are restricted to being one of the following possibilities: “none”,
“square”, “circle”, “diamond”, “xCross”, “plus”, “star”, “triangleUp”, “triangleDown”, “triangle-
Left”, “triangleRight”, “hDash”, and “vDash”. Attributes of type MarkerType cannot take on any other
values. The meaning of these values is discussed in the context of the Marker class’s definition in 2.2.18.2.

Type MappingType

The MappingType primitive data type is used in the definition of the FitMapping class. MappingType is
derived from type string and its values are restricted to being one of the following possibilities: “time”,
“experimentalCondition” and “observable”. Attributes of type MappingType cannot take on any other
values. The meaning of these values is discussed in the context of the FitMapping class’s definition in
2.2.10.7.

Type ExperimentType

The ExperimentType primitive data type is used in the definition of the FitExperiment class. Experiment-
Type is derived from type string and its values are restricted to being one of the following possibilities:
“steadyState” and “timeCourse”. Attributes of type ExperimentType cannot take on any other values.
The meaning of these values is discussed in the context of the FitExperiment class’s definition in 2.2.10.6.

Type AxisType

The AxisType primitive data type is used in the definition of the Axis class. AxisType is derived from
type string and its values are restricted to being one of the following possibilities: “linear”, and
“logl0®”. Attributes of type AxisType cannot take on any other values. The meaning of these values is
discussed in the context of the Axis class’s definition in 2.2.12.4.

11

2.1.1.19 Type ScaleType

2.1.2

The ScaleType primitive data type is used in the definition of the Bounds class. ScaleType is derived
from type string and its values are restricted to being one of the following possibilities: “linear”,
“log”, and “logl®”. Attributes of type ScaleType cannot take on any other values. The meaning of
these values is discussed in the context of the Bounds class’s definition in 2.2.10.4.

SEDBase

SEDBase is the base class of all SED-ML classes (Figure 2.3). The SEDBase class has the optional
attribute metaid, and the two optional subelements notes and annotation.

The optional notes and annotation subelements provide investigators the ability to attach additional
information to all SED-ML objects.

SEDBase

metaid: ID { use="optional" }
id: Sld { use="optional" }
name: string { use="optional" }

¢

t 0,1
notes Notes

xmins:string { "http://www.w3.0rg/1999/xhtml" }
{ Alimost any well-formed content permitted in XHTML,
subject to a few restrictions; see text. }

annotation 0,1

Annotation

{ Any well-formed XML content, and with each top-level
element placed in a unique XML namespace; see text. }

Figure 2.3: The SEDBase, Notes, and Annotation classes

id

The id attribute is an optional attribute on the SEDBase class. The id attribute value on an object
serves as its identifier. The data type of id on SEDBase is SId (Section 2.1.1.2). Every SId attribute
value in a SED-ML Document must be unique. Whenever a SED-ML element references another SED-
ML element, it must use this identifier to do so.

Although id is optional on SEDBase, object classes derived from SEDBase may stipulate that id is a
required attribute for those classes.

In earlier versions of SED-ML, the attributes id and name were defined on individual object subclasses.
The movement of these attributes to SEDBase in this version has no practical effect on these classes.

An example for an id is given in Listing 2.1. In the example the model has the id m00001.

1 <model id="m00OO01" language="urn:sedml:language:sbml"

2 source="https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOOOOOO1I27?filename=
BIOMDOOOOOOOO12 url.xml">
3 [MODEL DEFINITION]

4 </model>

Listing 2.1: SED-ML id definition, e.g., for a model

name

The attribute name is an optional attribute on SEDBase of type string. In contrast to the id attribute,
the name attribute is not intended to be used for cross-referencing purposes within a model. Its purpose

12

213

instead is to provide a human-readable label for a component. The data type of name is the type string
defined in XML Schema [4, 21]. SED-ML imposes no restrictions as to the content of name attributes
beyond those restrictions defined by the string type in XML Schema. In addition, name values do not
need to be unique.

Listing 2.2 extends the model definition in Listing 2.1 by a model name.

1 <model id="m0®OO1" name="Circadian oscillator" language="urn:sedml:language:sbml"”

2 source="https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOOOOOO1I27?filename=
BIOMDOOOOOOOOLI2 url.xml">
3 [MODEL DEFINITION]

4 </model>

Listing 2.2: SED-ML name definition, e.g., for a model

metaid

The main purpose of the metaid attribute of data type ID is to use the Annotation class to attach
semantic annotations to elements of SED-ML documents. The metaid attribute must be globally unique
throughout a SED-ML document, i.e., the metaid must be unambiguous throughout a whole SED-ML
document.

A metaid is required to apply a Notes or Annotation to a SED-ML element.
notes

The optional notes element stores Notes on SEDBase.

annotation

The optional annotation element stores Annotation on SEDBase.

Notes

A Notes can be used to provide a human-readable description of an element of a SED-ML document.
Instances of the Notes class may contain any valid XHTML [20]. The namespace URL for XHTML content
inside the Notes class is http://www.w3.0rg/1999/xhtml, which may be declared either in the SedML
element, or directly in the top level XHTML elements contained within the notes element. For details
on of how to set the namespace and examples see the SBML specification [15].

Table 2.1 shows all attributes and sub-elements for the Notes element.

attribute description

xmlns:string page 26
“http://www.w3.org,/1999/xhtml”

sub-elements

well-formed content permitted in XHTML

Table 2.1: Attributes and nested elements for Notes. °denotes optional elements and attributes.

Notes does not have any further sub-elements defined in SED-ML, nor attributes associated with it.

Listing 2.3 shows the use of the notes element.

1 <sedML [..]>
2 <notes>

3 <p xmlns="http://www.w3.0rg/1999/xhtml">The enclosed simulation description shows the oscillating
behaviour of the Repressilator model using deterministic and stochastic simulators.</p>

4 </notes>

5 </sedML>

Listing 2.3: The notes element

In this example, the namespace declaration is inside the notes element and the note is related to the
sedML root element of the SED-ML file. A note may, however, occur inside any SED-ML XML element,
except note itself and Annotation.

13

http://www.w3.org/1999/xhtml

214

215

Annotation

An Annotation can be used to capture computer-processable information about an element of a SED-
ML document. Annotations may contain any valid XML content. For further guidelines on how to
use annotations see the SBML specification [15]. The recommended style of annotations in SED-ML is
briefly described in Section 3.2.4.

Listing 2.4 shows the use of the annotation element. In this example, a model element is annotated
with a reference to the original publication. The model contains an annotation that uses the model-
qualifier isDescribedBy to link to the external resource https://identifiers.org/pubmed/10415827.
In natural language, the annotation content could be interpreted as “The model is described by the
published article available from PubMed under the identifier 10415827

1 <sedML>

2 [..]

3 <model id="modell" metaid="_001" language="urn:sedml:language:cellml" source="goldbeter1999a.cellml”
>

4 <annotation>

5 <rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#" xmlns:bqmodel="http://

biomodels.net/model -qualifiers/">

6 <rdf:Description rdf:about="#_001">

7 <bgmodel:isDescribedBy>

8 <rdf:Bag>

9 <rdf:1i rdf:resource="https://identifiers.org/pubmed/10415827"/>

10 </rdf:Bag>

11 </bgmodel:isDescribedBy>

12 </rdf:Description>

13 </rdf:RDF>

14 </annotation>

15 </model>

16 [..]

17 </sedﬁ£>
Listing 2.4: The annotation element

Parameter

The Parameter class (Figure 2.4) can be used to create named parameters with a constant value for
use in mathematical expressions. The Parameter class introduces the required attribute value of type
double, and inherits other attributes and children from SEDBase, with the exception that the attribute
id is required instead of optional. The id takes on the value of the value in the context of the Math
of the parent Calculation. Its id may not be used in a Calculation that is not its parent, but it must
nevertheless be globally unique.

N
SEDBase \

i

Parameter

id: Sld { use="required" }
value: double

Figure 2.4: The Parameter class

A Parameter can be used wherever a mathematical expression to compute a value is defined, e.g., in
ComputeChange, FunctionalRange or DataGenerator. The Parameter definitions are local to the partic-
ular class defining them. Using Parameters rather than including numbers directly within mathematical
expressions enables investigators to use notes and annotations to provide additional information about
the constants involved in mathematical expressions.

Every Parameter is defined inside a ListOfParameters. The element is optional and may contain zero to
many parameters.

Listing 2.5 shows the use of the parameter element. This example defines a parameter pl with the
value 40.

14

2.1.6

1 <listOfParameters>
2 <parameter id="pl" name="KM" value="40" />
3 </listOfParameters>

Listing 2.5: The definition of a parameter in SED-ML

value

The value attribute of data type double is required for each Parameter. Each Parameter has exactly
one fixed value.

Variable

A Variable (Figure 2.5) is a reference to a mathematical value. The Variable class inherits the attributes
and children of SEDBase, changing the attribute id to be required, and adds several more. A Variable
references a single mathematical element (which in some cases may be multidimensional) by using its
attributes target, symbol, target2, symbol2, and term, either together or separately. It may also need
to reference a particular model in a particular context by using the modelReference and taskReference
attributes. Finally, it may reduce the dimensionality of the resulting math by using the dimensionTerm
attribute with one or more AppliedDimension children, as members of its ListOfAppliedDimensions child.
All of these additional attributes and child objects are optional, but must together be used to fully define
a unique mathematical reference.

SEDBase

I

Variable

id: SId { use="required" }
modelReference: SldRef { use="optional" }
taskReference: SIdRef { use="optional" }
target: TargetType { use="optional" }
symbol: string { use="optional" }

target2: TargetType { use="optional" }
symbol2: string { use="optional" }

term: anyURI { use="optional" }
dimensionTerm: anyURI { use="optional" }

YIistOprpIiedDimensions 0,1

ListOfAppliedDimensions

? appliedDimension 0..*

AppliedDimension

target: SIdRef { use="optional" }
(to Task, RepeatedTask, or SubTask)
dimensionTarget: NuMLIdRef { use="optional" }

Figure 2.5: The Variable, ListOfAppliedDimensions, and AppliedDimension classes

A Variable may be used in one of the following ways:
e To reference an explicit element of a model, using the target attribute. An SBML Species or a
CellML Variable are two examples.

e To reference a DataGenerator or DataSource in the same document, using the target attribute.
A target with the value “#dataSourcel” is one example.

e To reference an implicit element of a model, using the symbol attribute. ‘Time’ in an SBML model
is one example.

15

e To reference an implicit aspect of an explicit model element, using both the target and symbol
attributes. ‘The concentration of an SBML Species’ is one example.

e To reference a mathematical concept implicit in the model, using the term attribute. ‘The Stoi-
chiometry matrix’ is one example.

e To reference a mathematical concept implicit in the model for one or two explicit or implicit model
elements, using the term attribute in combination with one or more of the target, symbol, target2,
and symbol2 attributes. ‘The rate of change of species S1 with respect to time’ is one example;
‘the elasticity of reaction J1 with respect to p®’ is another.

e To reference a mathematical dimension reduction of any of the above, using the dimensionTerm
in combination with one or more AppliedDimension children, along with other attributes as above
that point to any multidimensional construct. ‘The average of model variable P® over time’ is one
example; ‘the smallest eigenvalue’ is another.

In addition, a Variable must either reference data directly (using a target that points to a DataSource
or DataGenerator), or clearly reference a single model or task/model combination from which the above
mathematics is derived. This can be done using the taskReference and/or modelReference attributes,
and depends on the context of the Variable:

e If the target of the Variable references a DataSource, neither the modelReference nor the task-
Reference may be defined, as external data has neither models nor tasks. Otherwise:

e In a ComputeChange child of a Model, there is no task, and a single modelReference is used
to reference the initial state of any model, including the parent of the ComputeChange. The
taskReference must not be defined.

e In a FunctionalRange, the task is taken to be the parent of the FunctionalRange, and the model-
Reference is taken to be the model being changed by the parent AbstractTask. FEither the
modelReference or taskReference may be defined so as to be explicit. The modelReference
is required if the parent AbstractTask itself references multiple models.

e In a DataGenerator, the task must be defined with the taskReference attribute. If the referenced
AbstractTask uses multiple models, the modelReference attribute must also be defined. The
modelReference attribute may also be defined to be explicit.

e In a SetValue, the taskReference is taken to be the parent AbstractTask, and the modelReference
is used to reference the current state of any model. If the model in question is not modified by
the AbstractTask, that model’s initial state is used. The taskReference may be set explicitly if
desired, and must reference the parent AbstractTask if so.

For a Variable child of a DataGenerator, the Variable is by definition multidimensional, taking on the
dimensions of the referenced AbstractTask in addition to its base definition. In all other cases, the
Variable has only the dimensions of its base definition, and is derived from the current or initial state of
the referenced Model, as above. In essense, this means that a Variable that points to “p1” in a Model
can be:

e The scalar value of pl in the context of a ComputeChange,
e A vector of pl values in the context of a DataGenerator pointing to a timecourse Task, or

e A multidimensional vector of pl values in the context of a DataGenerator pointing to a Repeated-
Task of timecourses.

Listing 2.6 on the next page shows the use of the variable element. In the example a variable v1 is de-
fined to compute a change on a model constituent (referenced by the target attribute on computeChange).
The value of v1 corresponds to the value of the targeted model constituent referenced by the target
attribute. The second variable v2 is used inside a dataGenerator. As the variable is time as used in
task1, the symbol attribute is used to refer to the SED-ML URI for time.

16

<sedML>

1
2 <listOfModels>

3 <model [..]>

4 <listOfChanges>

5 <computeChange target="TARGET ELEMENT OR ATTRIBUTE">

6 <listOfVariables>

7 <variable id="v1" name="maximum velocity" target="PATH TO MODEL ELEMENT/ATTRIBUTE" />
8 [FURTHER VARIABLE DEFINITIONS]

9 </listOfVariables>

10 [..]

11 </computeChange>

12 </listOfChanges>

13 [..]

14 </model>

15 [..]

16 </1listO0fModels>

17 <listOfDataGenerators>

18 <dataGenerator [..]>

19 <listOfVariables>

20 <variable id="v2" name="time" taskReference="taskl" symbol="KISAO:0000832" />
21 [FURTHER VARIABLE DEFINITIONS]

22 </listOfVariables>

23 </dataGenerator>

24 </listOfDataGenerators>

25 [..]
26 </sedML>

Listing 2.6: SED-ML variable definitions inside the computeChange element and inside the
dataGenerator element

target

An instance of Variable can refer to a model constituent inside a particular model through the address
stored in the target attribute, such as an XPath expression.

Note that while it is possible to write XPath expressions that select multiple nodes within a referenced
model, when used within a target attribute, a single element or attribute must be selected by the
expression.

The target attribute may also be used in several situations to reference another SED-ML element with
mathematical meaning, by containing a fragment identifier consisting of a hash character (#) followed
by the SId of the element (i.e. “#1d001”):

e Any Variable may use a target to reference a DataSource. In this situation, the Variable has the
mathematical meaning and dimensionality (which may be reduced) of the referenced data.

e A Variable inside a DataGenerator may use a target to reference a different DataGenerator. In this
situation, the Variable has the mathematical meaning and dimensionality (which may be reduced)
of that DataGenerator.

e A Variable inside a RepeatedTask may use a target to reference a Range. In this situation, the
Variable has the mathematical meaning of the scalar value of the Range for that iteration of the
RepeatedTask.

There are no other situations in SED-ML where the id of a SED-ML element may be used as the
target of a Variable. Also note that multidimensional DataSource ids may not be used in RepeatedTask
elements, nor Range ids in DataGenerator elements. (To access multidimensional data for a Range, a
DataRange may be used instead.)

Listing 2.7 shows the use of the target attribute in a SED-ML file. In the example the target is used
to reference a species with id="PY’ in an SBML model.

1 <listOfVariables>

2 <variable id="v1" name="TetR protein" taskReference="taskl"

3 target="/sbml:sbml/sbml:1listOfSpecies/sbml:species[@id="PY’]" />
4 </listOfVariables>

Listing 2.7: SED-ML target definition

It should be noted that the identifiers and names inside the SED-ML document do not have to match
the identifiers and names that the model and its constituents have in the model definition. In Listing 2.7,
the variable with ID v1 is defined. It is described as TetR protein. The reference points to a species in
the referenced SBML model. The particular species can be identified through its ID in the SBML model,
namely PY. However, SED-ML also permits using identical identifiers and names as in the referenced

17

models. The following Listing 2.8 is another valid example for the specification of a variable, but uses
the same naming in the variable definition as in the original model (as opposed to Listing 2.7):

1 <listOfVariables>

2 <variable id="PY" name="TetR protein" taskReference="taskl"

3 target="/sbml:sbml/sbml:1listOfSpecies/sbml:species[@id="PY']" />
4 </listOfVariables>

Listing 2.8: SED-ML wvariable definition using the original model identifier and name in SED-ML

1 <sbml [..]>

2 <listOfSpecies>
3 <species metaid="PY" id="PY" name="TetR protein" [..]>
4 [..]

5 </species>
6 </listOfSpecies>
7 [..]
8 </sbml>

Listing 2.9: Species definition in the referenced model

The XPath expression used in the target attribute unambiguously leads to the particular place in the
SBML model, i.e., the species is to be found in the sbml element, and there inside the listOfSpecies
(Listing 2.9).

symbol

The symbol attribute of type string is used to refer either to a predefined, implicit variable or to a prede-
fined implicit function to be performed on the target. In both cases, the symbol should be a kisaoID (and
follow the format of that attribute) that represents that variable’s concept. The notion of implicit vari-
ables is explained in Section 3.2.3. For backwards compatibility, the old string “urn:sedml : symbol: time”
is also allowed, though interpreters should interpret “KISA0:0000832” as meaning the same thing.

In the case where the symbol refers to a function, the function is applied to the target of the Variable.
If the function reduces the dimensionality of the Variable, at least one AppliedDimension child should
be used.

Listing 2.10 shows the use of the symbol attribute in a SED-ML file. The example encodes a variable
“t1” defined to be the SED-ML symbol for time. How to use this variable to calculate a change is
explained in Section 2.2.5.6.

1 <listOfVariables>
2 <variable id="t1" name="time" taskReference="taskl" symbol="KISAO:0000832" />
3 </listOfVariables>

Listing 2.10: SED-ML symbol definition

term

The term attribute is of type string, and should conform to the syntax of a kisaoID. The term may
refer to a function (such as ‘rate of change’, KISAO:0000834) that relates two variables to each other,
instead of just one, or it may refer to an analysis (such as ‘the eigenvalue matrix’, KISAO:0000813) that
is dependent on the model as a whole and not on individual model elements.

target2

A target2 attribute has exactly the same constraints and behavior as a target attribute, but refers to
a second mathematical element, and is always used in conjunction with a term.

symbol2

A symbol2 attribute has exactly the same constraints and behavior as a symbol attribute, but refers to
a second mathematical element, and is always used in conjunction with a term.

<listOfVariables>

1
2 <variable id="Slprime" name="S1’" taskReference="taskl"

3 target="/sbml:sbml/sbml:1istOfSpecies/sbml:species[@id="S1’]"
4 symbol2="KISAO:0000832"

5 dimensionTerm="KISAO:0000834" />

6 </listOfVariables>

Listing 2.11: SED-ML wvariable definition of ‘the rate of change of S1 with respect to time’

18

21.7

taskReference

The taskReference element of data type SIdRef is used to reference a Task via a taskReference. The
usage depends on the context the Variable is used in.

modelReference

The modelReference element of data type SIdRef is used to reference a Model via a modelReference.
The usage depends on the context the Variable is used in.

Together, the taskReference and modelReference attributes define a model and its context which the
other attributes use to pull data from.

dimensionTerm

A dimensionTerm attribute has exactly the same constraints as the term attribute, but must refer to a
KiSAO term that reduces the dimensionality of multidimensional data. Currently, all such KiSAO terms
inherit from “KISAO:0000824” (‘aggregation function’) and includes functions such as mean (“KISAO: -
0000825”), standard deviation (“KISA0:0000826”), and maximum (“KISAO:0000828”).

Together with the AppliedDimension children, the dimensionTerm defines how to reduce the dimension-
ality of the data defined by the other attributes of a Variable.

AppliedDimension

An AppliedDimension object is exclusively used when the dimensionTerm of the Variable is defined, and
describes which dimension or dimensions that function is applied to. When multiple dimensions are
defined, the function is applied over both at once, and not sequentially. For example, a variable derived
from a Task inside a RepeatedTask will have the dimensionality of both. If the dimensionTerm of the
parent Variable is the ‘mean’ function (“KISA0:0000825”), the following options are available:

e The Variable contains a single AppliedDimension child that refers to the RepeatedTask. The
resulting data will have the same dimensions as if the Variable referred directly to the Task, but
averaged over every repeat of the RepeatedTask. This situation is particularly common when the
Task is a stochastic time course simulation, and the RepeatedTask is a simple loop of that Task.

e The Variable contains a single AppliedDimension child that refers to the Task. The resulting data
will be a vector with the same number of entries as there were repeats of the RepeatedTask. This
situation is particularly helpful when the RepeatedTask is a parameter scan, and the Variable is
tracking a model variable that oscillates during the Task. The resulting vector will be the average
value of that model variable under each of the different starting conditions.

e The Variable contains two AppliedDimension children, one that refers to the RepeatedTask and
one to the Task. The resulting data will be a single value, that has been averaged over both the
Task and RepeatedTask. In this case, the function is performed on an element-by-element basis.

The term of the parent Variable with one or more AppliedDimension children should always reference a
function that reduces the dimensionality of the data (i.e. children of KISAO:0000824).

An AppliedDimension inherits the attributes and children of SEDBase, and adds the attributes target
(of type SIdRef), and dimensionTarget (of type NuMLIdRef), both of which are optional, but one of
which must be present.

target

The target attribute of an AppliedDimension is used when the applied dimension is a Task or Re-
peatedTask, which must be implicitly involved in the construction of the dimensionality of the parent
Variable.

Possible values for the target attribute include:
e The id of a RepeatedTask

e The id of a Task referenced by a RepeatedTask
e The id of a SubTask child of a RepeatedTask

19

2.1.8

dimensionTarget

The dimensionTarget attribute of an AppliedDimension is used when the Variable references an external
data set. The NuMLIdRef must reference a dimension of the referenced data.

Calculation

The Calculation class is an abstract base class for the ComputeChange, DataGenerator, and Functional-
Range classes (defined later). A Calculation inherits from SEDBase, and adds three children: a required
Math child, and optional lists of Variable and Parameter objects. In all three of its uses, it performs a
calculation that optionally may depend on locally-defined elements. This abstract class is provided for
convenience, since all three other classes contain this same relatively complicated structure. However, as
FunctionalRange also inherits from Range, and ComputeChange also inherits from Change, implemen-
tations may choose to simply re-instantiate the child elements of Calculation on these or other derived
classes, in environments where multiple inheritance is illegal or infeasible.

SEDBase
I
Calculation
VANEEK 2
th

ma Math
xmlns: string {"http://www.w3.0org/1998/Math/MathML"}
{ MathML content. }

listOfVariables 0,1 ListOfVariables

? variable 0.*

Variable
listOfParameters 0,1 ListOfParameters
? parameter 0..* Parameter
- ComputeChange
- DataGenerator

— FunctionalRange

Figure 2.6: The Calculation, Math, ListOfVariables, ListOfParameters, and Parameter classes.

In the ListOfVariables, the Variable elements define identifiers referring to model variables or range
values, which may then be used within the Math expression. These references always retrieve the current
value of the variable in the context of the Calculation. A ListOfVariables may contain any number of
Variable entries.

In the ListOfParameters, the Parameter elements define simple values that may be used in the Math of
the Calculation.

20

2.1.8.1

2.1.9

2.1.9.1

2.1.9.2

2.1.10

2.1.10.1

The Math encompasses the mathematical expression that is used to compute the value for the Calculation.

Math

A Calculation’s mandatory child element math contains a MathML expression used to calculate a value
in the context of the Calculation. The available subset of mathematical functions and elements which
can be used in the Math element are listed in Section MathML.

General attributes and elements

This section describes attributes which occur on multiple SED-ML classes, e.g., kisaoID, or 1ist0£f*
constructs.

kisaoID

Some classes, e.g., Algorithm and AlgorithmParameter, have a mandatory element kisaoID or another
attribute which references a term from the KiSAO ontology. The referenced term must be defined using
the syntax defined by the regular expression "KISAO:[0-9]1{7}$. Note, this syntax uses colons rather
than the underscores used by the official id of each KiSAO term.

Investigators are encouraged to use as precise KiSAO terms as possible to indicate simulation Algorithm
and AlgorithmParameter. As needed, investigators can request additional terms.

1istOf* containers

SED-ML 1istOf* elements serve as containers for a collection of objects of the same type. For example,
the 1listOfModels contains all Model objects of a SED-ML document. Lists do not carry any further
semantics nor do they add additional attributes. They might, however, be annotated with Notes and
Annotation as they are derived from SEDBase. All 1istOf* elements are optional in a SED-ML document
(with exception of 1istOfRanges and listOfSubTasks in a RepeatedTask, which are mandatory).

Reference relations

The reference concept is used to refer to a particular element inside the SED-ML document. It may
occur as an association between:

e two Models (modelReference)

e a Variable and a Model (modelReference)

a Variable and an AbstractTask (taskReference)

e a Task and the simulated Model (modelReference)
e a Task and the Simulation (simulationReference)
e an Output and a DataGenerator (dataReference)

The definition of a Task requires a reference to a particular Model object (modelReference); furthermore,
the Task object must be associated with a particular Simulation object (simulationReference).

Depending on the use of the reference relation in connection with a Variable object, it may take different
roles:

a. The reference association might occur between a Variable object and a Model object, e.g., if the
variable is to define a Change. In that case the variable element contains a modelReference to
refer to the particular model that contains the variable used to define the change.

b. If the reference is used as an association between a Variable object and an AbstractTask object inside
the dataGenerator class, then the variable element contains a taskReference to unambiguously
refer to an observable in a given task.

modelReference

The modelReference is a reference used to refer to a particular Model via a SIdRef. The modelReference
either represents a relation between two Model objects, a Variable object and a Model object, or a

21

2.1.10.2

2.1.10.3

relation between a Task object and a Model object.

The source attribute of a Model is allowed to reference either a URI or an SId of a second Model.
Circular constructs where a model A refers to a model B and B to A (directly or indirectly) are invalid.

If pre-processing needs to be applied to a model before simulation, then the model update can be
specified by creating a Change object. In the particular case that a change must be calculated with a
mathematical function, variables need to be defined. To refer to an existing entity in a defined Model,
the modelReference is used.

The modelReference attribute of the variable element contains the id of a model that is defined in the
document.

Listing 2.12 shows the use of the modelReference element. In the example, a change is applied on
model m0001. In the computeChange element a list of variables is defined. One of those variable is v1
which is defined in another model (cel1ML). The XPath expression given in the target attribute identifies
the variable in the model which carries the ID cellML.

1 <model id="m0OO1" [..]>

2 <listOfChanges>

3 <computeChange>

4 <listOfVariables>

5 <variable id="v1" modelReference="cellML" target="/cellml:model/cellml:component[
@cmeta:id="MP’]/cellml:variable[@name="vsP’]/@initial_value" />

6 [..]

7 </listOfVariables>

8 <listOfParameters [..] />

9 <math>

10 [CALCULATION OF CHANGE]

11 </math>

12 </computeChange>

13 </listOfChanges>

14 [..]

15 </modéi>
Listing 2.12: SED-ML modelReference attribute inside a variable definition of a computeChange
element

The modelReference is also used to indicate that a Model object is used in a particular Task. Listing
2.13 shows how this can be done for a sample SED-ML document.

1 <listOfTasks>

2 <task id="t1" name="Baseline" modelReference="modell" simulationReference="simulationl" />
3 <task id="t2" name="Modified" modelReference="model2" simulationReference="simulationl" />
4 </listOfTasks>

Listing 2.13: SED-ML modelReference definition inside a task element

The example defines two different tasks; the first one applies the simulation settings of simulationl on
modell, the second one applies the same simulation settings on model2.

simulationReference

The simulationReference is used to refer to a particular Simulation via a SIdRef, e.g., in a Task.

Listing 2.13 shows the reference to a defined simulation for a sample SED-ML document. In the example,
both tasks t1 and t2 use the simulation settings defined in simulationl to run the experiment.

taskReference

The taskReference is a reference used to refer to a particular AbstractTask via a SIdRef. The taskRef-
erence is used in SubTask to reference the respective subtask, or in Variable within a DataGenerator.

DataGenerator objects are created to apply post-processing to the simulation results before final output.
For certain types of post-processing Variable objects need to be created. These link to a task defined
within the ListOfTasks from which the model that contains the variable of interest can be inferred. A
taskReference association is used to realise that link from a Variable object inside a DataGenerator to
an AbstractTask object. Listing 2.14 gives an example.

1 <listOfDataGenerators>

2 <dataGenerator id="tim3" name="tim mRNA (difference v1-v2+20)">
3 <listOfVariables>

4 <variable id="v1" taskReference="tl1" [..] />

5 </listOfVariables>

6 <math [..]/>

22

7 </dataGenerator>
8 </listOfDataGenerators>

Listing 2.14: SED-ML taskReference definition inside a dataGenerator element

The example shows the definition of a variable v1 in a dataGenerator element. The variable appears in
the model that is used in task t1. The task definition of t1 might look as shown in Listing 2.15.

1 <listOfTasks>
2 <task id="t1" name="task definition" modelReference="modell" simulationReference="simulationl" />
3 </1listOfTasks>

Listing 2.15: Use of the reference relations in a task definition

Task t1 references the model modell. Therefore we can conclude that the variable vl defined in List-
ing 2.14 targets an element of the model with ID modell. The targeting process itself will be explained
in section 2.1.6 on page 17.

23

2.2

2.21

SED-ML Components

This section describes the major components of SED-ML. Each subsection includes UML diagrams for
the relevant classes. Example simulation experiments are provided in Appendix A. Complete examples
with model files are available at https://sed-ml.org/.

SED-ML top level element

Each SED-ML Level 1 Version 4 document has a main class called SED-ML which defines the document’s
structure and content (Figure 2.7 on the following page). It consists of several parts connected to the
SED-ML class via 1istO0f* constructs:

e DataDescription (for specification of external data),

e Model (for specification of models),

e Simulation (for specification of simulation setups),

o AbstractTask (for the linkage of models and simulation setups),
e DataGenerator (for the definition of post-processing),

e Output (for the specification of plots and reports).

e Style (for the specification of plot element styles).

e AlgorithmParameter (for the definition of global algorithm parameters).

A SED-ML document needs to have the SED-ML namespace defined through the mandatory xmlns
attribute. In addition, the SED-ML level and version attributes are required.

The root element of each SED-ML XML file is the sedML element, encoding level and version of the file,
and setting the necessary namespaces. Nested inside the sedML element are the six optional lists serving
as containers for the encoded information: 1istOfDataDescriptions for all external data, 1istOflModels
for all models, 1istOfSimulations for all simulations, 1istOfTasks for all tasks, 1istOfDataGenerators
for all post-processing definitions, 1istOfOutputs for all output definitions, ListOfStyles for all style
definitions. and ListOfAlgorithmParameters for parameters that apply to processing this SED-ML file
as a whole.

24

https://sed-ml.org/

N\
SEDBase N

/\

SED-ML

xmilns: string { use="required” fixed="http://sed-ml.org/sed-ml/level1/version4” }
level: positivelnteger { use="
version: positivelnteger { use="required” fixed="4" }

required” fixed="1"}

01 ! ListOfAlgorithmParameters }

TalgorithmParameter 0.* |

1 AlgorithmParameter

listOfDataDescripti 1
istOfDataDescriptions o1 ListOfDataDescriptions I
\YdataDescription 0. | DataDescription
|
listOfModels o] ListOfModels I
Tmodel 0.* | Model
|
listOfSimulations 01] ListofSimulati I
1 J
T[S"’"“’a”""] 0. | Simulation
|
listOfTask 1
istOfTasks 0] ListOfTasks I
T[abstractTaSk] 0. | AbstractTask
|
listOfDataGenerators 0.1 ListOfDataGenerators I
?dataGenerator 0. b t ﬁ—
| ator
listOfOutputs 0.1 I ListOfOutputs I
T[autput] 0.* | ﬁ—
Output
1 P
listOfStyles 0.1 ! ListOfStyles]
Tstyle 0." | ﬁf
Style
I y!
listOfAlgorithmParameters

Figure 2.7: The SED-ML class

The basic XML structure of a SED-ML file is shown in listing 2.16.

1 <?xml version="1.0" encoding="utf-8"?>
2 <sedML xmlns:math="http://www.w3.0rg/1998/Math/MathML"

3 xmlns="http://sed-ml.org/sed-ml/levell/versiond4" level="1" version="4">
4 <listOfDataDescriptions>

5 [DATA REFERENCES AND TRANSFORMATIONS]
6 </listOfDataDescriptions>

7 <listOfModels>

8 [MODEL REFERENCES AND APPLIED CHANGES]
9 </1list0fModels>

10 <listOfSimulations>

11 [SIMULATION SETUPS]

12 </listOfSimulations>

13 <listOfTasks>

14 [MODELS LINKED TO SIMULATIONS]

15 </listOfTasks>

16 <listOfDataGenerators>

17 [DEFINITION OF POST-PROCESSING]

18 </listOfDataGenerators>

19 <listO0fOutputs>

20 [DEFINITION OF OUTPUT]

21 </1istOfOutputs>

22 <listOfStyles>

23 [DEFINITION OF STYLES]

24 </1listOfStyles>

25 <listOfAlgorithmParameters>

26 [PARAMETERS TO APPLY TO THE ENTIRE SIMULATION PROCESS]
27 </listOfAlgorithmParameters>

28 </sedML>

Listing 2.16: The SED-ML root element

25

2.2.1.1

2.2.1.2

2.2.1.3

2.2.1.4

2.2.1.5

xmlns

The xmlns attribute declares the namespace for the SED-ML document. The pre-defined namespace for
SED-ML documents is http://sed-ml.org/sed-ml/levell/version4.

In addition, SED-ML makes use of the MathML namespace http://www.w3.0rg/1998/Math/MathML to
enable the encoding of mathematical expressions. SED-ML notes use the XHTML namespace http:
//uwww.w3.0rg/1999/xhtml. Additional external namespaces might be used in annotations.

level

The current SED-ML level is 1. Major revisions containing substantial changes will lead to the definition
of forthcoming levels. The level attribute is required and its value is a fixed decimal. For SED-ML
Level 1 Version 4 the value is set to 1, as shown in the example in Listing 2.16.

version

The current SED-ML version is 4. Minor revisions containing corrections and refinements of SED-ML
elements, or new constructs which do not affect backwards compatibility, will lead to the definition of
forthcoming versions.

The version attribute is required and its value is a fixed decimal. For SED-ML Level 1 Version 4 the
value is set to 4, as shown in the example in Listing 2.16.

listOfDataDescriptions

In order to reference data in a simulation experiment, the data files along with a description on how to
access such files and what information to extract from them have to be defined. The SED-ML document
uses the listOfDataDescriptions container to define DataDescriptions for referencing external data
(Figure 2.7 on the preceding page). The listOfDataDescriptions is optional and may contain zero or
more DataDescriptions.

Listing 2.17 shows the use of the 1listOfDataDescriptions element.

1 <listOfDataDescriptions>

2 <dataDescription id="Datal" name="Oscli Time Course Data" source="./oscli.numl">
3 <dimensionDescription>
4 <compositeDescription indexType="double" id="time" name="time" xmlns="http://www.numl.org/

numl/levell/versionl">
5 <compositeDescription indexType="string" id="SpeciesIds" name="SpeciesIds">
6 <atomicDescription valueType="double" name="Concentrations" />
7 </compositeDescription>
8 </compositeDescription>
9 </dimensionDescription>

10 <listOfDataSources>

11 <dataSource id="dataS1">

12 <listOfSlices>

13 <slice reference="SpeciesIds" value="S1" />
14 </listO0fSlices>

15 </dataSource>

16 <dataSource id="dataTime" indexSet="time" />

17 </listOfDataSources>

18 </dataDescription>

19 </listOfDataDescriptions>

Listing 2.17: SED-ML listOfDataDescriptions element

listOfModels

The models used in a simulation experiment are defined in the 1istOfModels container (Figure 2.7 on
the preceding page). The 1istOfModels is optional and may contain zero or more Models. However, if
a SED-ML document contains one or more Tasks, at least one Model must be defined to which the Task
elements refer (see Section 2.1.10.1).

Listing 2.18 shows the use of the 1istOfModels element.

1 <listOfModels>

2 <model id="m@®OO1" language="urn:sedml:language:sbml"”

3 source="https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOO0O00127?filename=
BIOMDOOOOOOOO12_url.xml" />

4 <model id="m®O02" language="urn:sedml:language:cellml"”

5 source="https://models.cellml.org/workspace/leloup_gonze_goldbeter_1999/rawfile/

bfaac0e80b23726ffe®5b02f98b3d1d0®la2ee3b7/leloup_gonze_goldbeter_1999_a.cellml" />

26

http://sed-ml.org/sed-ml/level1/version4
http://www.w3.org/1998/Math/MathML
http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

2.2.1.6

2.2.1.7

2.2.1.8

6 </listOfModels>
Listing 2.18: SED-ML listOfModels element

listOfSimulations

The listOfSimulations element is the container for Simulation descriptions (Figure 2.7 on page 25).
The 1istOfSimulations is optional and may contain zero or more Simulations. However, if the SED-ML
document contains one or more Tasks, at least one Simulation element must be defined to which the
Task elements refer (see Section 2.1.10.2).

Listing 2.19 shows the use of the 1istOfSimulation element.

1 <listOfSimulations>

2 <simulation id="s1" [..]>

3 [UNIFORM TIMECOURSE DEFINITION]
4 </simulation>

5 <simulation id="s2" [..]>

6 [UNIFORM TIMECOURSE DEFINITION]
7 </simulation>

8 </listOfSimulations>

Listing 2.19: The SED-ML listOfSimulations element, containing two simulation setups

listOfTasks

The listOfTasks element contains the defined tasks for the simulation experiment (Figure 2.7 on
page 25). The listOfTasks is optional and may contain zero or more tasks, each of which is an in-
stance of a subclass of AbstractTask.

Each top-level task is defined such that its execution is independent of the others: if one task is executed
after another, the states of the models must be completely reset so there’s no cross-contamination of one
task to the next. This means that the top-level tasks are particularly well suited to being executed in
parallel, should that be desired.

SED-ML interpreters may choose to execute all the tasks in the list, or they may choose to examine the
list of outputs, and only execute the tasks that are necessary to produce the requested output. This
situation comes up most often when one task is listed as a SubTask of a RepeatedTask: the outputs may
well only require the RepeatedTask to be run, meaning an independent execution of the singular Task
is not necessary, even though it’s on this list.

Listing 2.20 shows the use of the 1ist0fTasks element.

1 <listOfTasks>
2 <task id="t1" name="simulating v1" modelReference="ml" simulationReference="sl1">
3 [FURTHER TASK DEFINITIONS]
4 </listOfTasks>
Listing 2.20: The SED-ML 1istOfTasks element, defining one task
listOfDataGenerators

The listOfDataGenerators container holds the dataGenerator definitions of a simulation experiment
(Figure 2.7 on page 25). The listOfDataGenerators is optional and in general may contain zero or
more DataGenerators.

In SED-ML, all variable and parameter values used in the Output class need to be defined as a Data-
Generator beforehand.

Listing 2.21 shows the use of the listOfDataGenerators element.

1 <listOfDataGenerators>

2 <dataGenerator id="d1" name="time">

3 [DATA GENERATOR DEFINITION FOLLOWING]

4 </dataGenerator>

5 <dataGenerator id="LaCI" name="LaCI repressor">
6 [DATA GENERATOR DEFINITION FOLLOWING]

7 </dataGenerator>

8 </listOfDataGenerators>

Listing 2.21: The listOfDataGenerators element, defining two data generators time and LaCl
repressor

27

2.2.1.9

2.2.1.10

2.2.1.11

2.2.2

listOfOutputs

The 1istOfOutputs container holds the Output definitions of a simulation experiment (Figure 2.7 on
page 25). The 1list0fOutputs is optional and may contain zero or more outputs.

Listing 2.22 shows the use of the 1ist0fOutputs element.

1 <listOfOutputs>

2 <report id="reportl">

3 [REPORT DEFINITION FOLLOWING]
4 </report>

5 <plot2D id="plotl">

6 [2D PLOT DEFINITION FOLLOWING]
7 </plot2D>
8 </listO0OfOutputs>

Listing 2.22: The listOfOutput element

listOfStyles

The 1listOfStyles container holds the Style definitions of a simulation experiment (Figure 2.7 on
page 25). The 1ist0fStyles is optional and may contain zero or more styles.

Listing 2.23 shows the use of the 1ist0fStyles element.

1 <listOfStyles>

2 <style id="redline">

3 [STYLE DEFINITION FOLLOWING]

4 </style>

5 <plot2D id="redline_bluesquares" baseStyle="redline">
6 [STYLE DEFINITION FOLLOWING]

7 </plot2D>

8 </listOfStyles>

Listing 2.23: The listOfStyles element

listOfAlgorithmParameters (global)

The 1listOfAlgorithmParameters container holds the AlgorithmParameter objects that apply globally.
This can include parameters like a seed (KISA0:0000488) that apply to the simulation experiment as
a whole, as well as algorithm parameters that might apply to all tasks of a particular type, such as
the absolute tolerance (KISA0:0000211). If an AlgorithmParameter is defined for a particular Sim-
ulation, it will take precedent over any global AlgorithmParameter with the same KiSAO ID. The
listOfAlgorithmParameters is optional and may contain zero or more parameters.

1 <listOfAlgorithmParameters>

2 <algorithmParameter name="absolute tolerance" kisaoID="KISA0:0000211" value="23"/>
3 <algorithmParameter name="seed" kisaoID="KISAO:0000488" value="1001"/>

4 </listOfAlgorithmParameters>

Listing 2.24: The global listOfAlgorithParameters element

DataDescription

The DataDescription class (Figure 2.8 on the following page) allows to reference external data, and
contains a description on how to access the data, in what format it is, and what subset of data to
extract.

28

A

SEDBase

DataDescription

id: Sld { use="required” }
source: anyURI
format: URN { use="optional” }

[2

dimensionDescription 0,1

DimensionDescription

xmins: string{"http://www.numl.org/numl/level1/version1"}
{NuML content restricted to a DimensionDescription or
derived classes}

listOfDataSources 0,1

ListOfDataSources

dataSource 0..*
L DataSource

id: SId { use="required" }
indexSet: NuMLSIdRef

listOfSlices 0,1

ListOfSlices

li 0..*
@ Slice

reference: NuUMLSIdRef

value: DataldRef { use="optional” }

index: SIdRef to RepeatedTask { use="optional” }
startindex: int { use="optional” }

endIndex: int { use="optional” }

Figure 2.8: The SED-ML DataDescription class

The DataDescription class introduces four attributes: the required attributes id and source and the op-
tional attributes format and name. In addition two optional elements are defined: dimensionDescription

and listOfDataSources.

Listing 2.25 shows the use of the dataDescription element.

1 <dataDescription id="Datal" name="Oscli Time Course Data" format="urn:sedml:format:numl"
2 source="https://svn.code.sf.net/p/libsedml/code/trunk/Samples/data/oscli.numl" >

3 [...]
4 </dataDescription>

Listing 2.25: SED-ML dataDescription element

source

The required source attribute of data type anyURI is used to specify the data file. The source attribute
provides a location of a data file, analog to how the source attribute on the Model is handled. In order
to resolve the source attribute, the same mechanisms are allowed as for the Model source element, i.e.,
via the local file system, a relative link, or an online resource.

format

The optional format attribute of data type URN is used to specify the format of the DataDescrip-
tion. The allowed formats are defined in the format references, e.g., NuML (urn:sedml:format:-
numl) or CSV (urn:sedml:format:csv). If it is not explicitly defined the default value for format
is urn:sedml: format:numl, referring to NuML representation of the data.

29

223

2.2.3.1

2.2.3.2

dimensionDescription

The optional dimensionDescription contains a DimensionDescription providing the dimension descrip-
tion of the data file. If the format is NuML (urn:sedml:format:numl) and a dimensionDescription is
set, then the dimensionDescription must be identical to the dimensionDescription of the NuML file.
If the format is not NuML, the dimensionDescription is required.

listOfDataSources

The optional 1listOfDataSources contains zero or more DataSource elements. A DataSource extracts
chunks out of the external data provided by the outer DataDescription element.

DataDescription components

DimensionDescription

The DimensionDescription class (Figure 2.8 on the preceding page) defines the dimensions and data
types of the external data provided by the outer DataDescription element. The DimensionDescription
is a NuML container containing the dimension description of the dataset.

In the following example a nested NuML compositeDescription with time spanning one dimension and
SpeciesIds spanning a second dimension is given. This two dimensional space is then filled with double
values representing concentrations.

1 <dimensionDescription>

2 <compositeDescription indexType="double" id="time" name="time"

3 xmlns="http://www.numl.org/numl/levell/versionl">

4 <compositeDescription indexType="string" id="SpeciesIds" name="SpeciesIds">

5 <atomicDescription valueType="double" id="Concentration" name="Concentration" />
6 </compositeDescription>

7 </compositeDescription>

8 </dimensionDescription>

Listing 2.26: SED-ML dimensionDescription element

DataSource

The DataSource class (Figure 2.8 on the previous page) extracts chunks out of the dataset provided
by the outer DataDescription element. The DataSource class introduces three attributes: the required
attribute id and the optional attributes name, indexSet, and 1istOfSlices (Figure 2.8 on the preceding

page).

DataSource elements can be used anywhere in the SED-ML Description. Specifically their id attribute
can be referenced as the target of any Variable, pre-pended by a ‘#’ inside DataGenerator, Com-
puteChange or SetValue objects if the referenced data is a scalar, and as the target of a Variable in any
DataGenerator even if the referenced data is multidimensional.

The id may also be used as the sourceReference of a DataRange, where the referenced data may be
multidimensional, and as the dataSource or pointWeight of a FitMapping, where the referenced data
must be one dimensional.

Here an example that references the DataSource dataS1:

1 <listOfDataDescriptions>

2 <dataDescription id="datal" name="data file" source="./example.numl" format="urn:sedml:format:numl">
3 <dimensionDescription>

4 <compositeDescription indexType="double" name="Time">

5 <compositeDescription indexType="string" name="SpeciesIds">

6 <atomicDescription valueType="double" name="Values" />
7 </compositeDescription>
8 </compositeDescription>
9 </dimensionDescription>

10 <listOfDataSources>

11 <dataSource id="dataS1">

12 <listOfSlices>

13 <slice reference="SpeciesIds" value="S1" />
14 </listO0fSlices>

15 </dataSource>

16 <dataSource id="dataTime" indexSet="Time" />

17 </listOfDataSources>

18 </dataDescription>

19 </listOfDataDescriptions>

20 <listOfDataGenerators>

21 <dataGenerator id="dgDataS1" name="S1 (data)">

30

2.2.3.3

22 <listOfVariables>

23 <variable id="varS1" modelReference="modell" target="#dataS1" />
24 </listOfVariables>

25 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

26 <ci> varSl </ci>

27 </math>

28 </dataGenerator>
29
38 </listOfDataGenerators>

This represents a change from Level 1 Version 1 and Level 1 Version 2, in which a taskReference was
always present for a variable in a DataGenerator.

To indicate that the target of the Variable is an entity defined within the current SED-ML description
(and not an entity in an external document, such as referenced by a XPath expression) the hashtag (#)
with the reference to an id is used.

In addition, this example uses the modelReference, in order to facilitate a mapping of the data with a
given model.

Data may contain NA values. All calculations containing a NA value have NA as a result.

Since data elements defined via the DimensionDescription of the DataDescription or within the NuML
file are either values or indices, the DataSource element provides two ways of addressing those elements,
the indexSet and listOfSlices.

indexSet

The indexSet attribute allows to address all indices provided by NuML elements with indexType.

For example for the indexSet time below, a dataSource extracts the set of all timepoints stored in the
index.

1 <dataSource id="dataTime" indexSet="time" />

Similarly

1 <dataSource id="allIds" indexSet="SpeciesIds" />

extracts all the species id strings stored in that index set. Valid values for indexSet are all NuML Id
elements declared in the dimensionDescription.

If the indexSet attribute is specified the corresponding dataSource may not define any slice elements.

listOfSlices

The 1istOfSlices contains one or more Slice elements. The 1listOfSlices container holds the Slice
definitions of a DataSource (Figure 2.8 on page 29). The 1ist0£Slices is optional and may contain zero
to many Slices.

Slice

If a DataSource does not define the indexSet attribute, it will contain Slice elements. Each slice removes
one dimension from the data hypercube.

The Slice class introduces a required reference attribute of type NuMLSIdRef, and four optional at-
tributes: value of type DataldRef, index of type SIdRef, and startIndex and endIndex, both of type
int (Figure 2.8 on page 29).

reference

The reference attribute references one of the indices described in the dimensionDescription. In the
example above, valid values would be: time and SpeciesIds.

value

The value attribute takes the value of a specific index in the referenced set of indices. For example:

1 <dataSource id="dataS1">

2 <listOfSlices>
3 <slice reference="SpeciesIds" value="S1" />
4 </listOfSlices>

31

224

s </dataSource>

isolates the index set of all species ids specified to only the single entry for S1, however over the full range
of the time index set. As stated before, there can be multiple slice elements present, so it is possible to
slice the data again to obtain a single time point, for example the initial one:

<dataSource id="dataS1">

1
2 <listOfSlices>

3 <slice reference="time" value="0" />

4 <slice reference="SpeciesIds" value="S1" />
5 </1listO0fSlices>

6 </dataSource>

index

The index attribute is an SIdRef to a RepeatedTask. This is for cases where the Slice refers to data
generated by potentially-nested RepeatedTask elements.

startIndex and endIndex

The startIndex and endIndex attributes can be used to further subdivide a subset of dimensional data
to only part of the full array of data. If startIndex is defined, no data point with an index less than
its value should be included, and if endIndex is included, no data point with an index greater than its
value should be included.

Model

The Model class defines the models used in a simulation experiment (Figure 2.9).

SEDBase 1

A

Model

id: Sld { use="required" }
source: anyURI
language: URN

T listOfChanges 0,1 ListOfChanges

Y [change] 0.*

Change —

Figure 2.9: The SED-ML Model class

Each instance of the Model class has the required attributes id, source, and language, the optional
attribute name, and the optional child 1istOfChanges.

The language attribute defines the format the model is encoded in.

The Model class refers to the particular model of interest through the source attribute. The restrictions
on the model reference are
e The model must be encoded in a well-defined format.

e To refer to the model encoding language, a reference to a valid definition of that format must be
given (language attribute).

e To refer to a particular model in an external resource, an unambiguous reference must be given
(source attribute).

32

A model might need to undergo pre-processing before simulation. Those pre-processing steps are specified
in the 1listOfChanges via the Change class.

Listing 2.27 shows the use of the model element. In the example the 1istOfModels contains three models:
The first model m0001 is the Repressilator model from BioModels Database available from https://www.
ebi.ac.uk/biomodels/model/download/BIOMDOOOOOOO0127filename=BIOMDOOOOOOOO12_url.xml. For
the SED-ML simulation the model might undergo preprocessing steps described in the 1istOfChanges.
Based on the description of the first model m0001, the second model m@®002 is built, which is a modified
version of the Repressilator model. m0002 refers to the model m@01 in its source attribute. mO902 might
then have additional changes applied to it on top of the changes defined in the pre-processing of mge01.
The third model in the code example is a model in CellML representation. The model m®003 is available
from the given URL in the source attribute. Again, it might have pre-processing steps applied before
used in a simulation.

1 <listOfModels>

2 <model id="m0001" language="urn:sedml:language:sbhml"

3 source="https://www.ebi.ac.uk/biomodels/model/download/BIOMDO0OOOOOO012? filename=
BIOMDOOOOOOOOLI2 url.xml">

4 <listOfChanges>

5 <change>

6 [MODEL PRE-PROCESSING]

7 </change>

8 </listOfChanges>

9 </model>

10 <model id="m®OO2" language="urn:sedml:language:sbml" source="#m@O01">

11 <listOfChanges>

12 [MODEL PRE-PROCESSING]

13 </listOfChange>

14 </model>

15 <model id="m0003" language="urn:sedml:language:cellml"” source="https://models.cellml.org/workspace/

leloup_gonze_goldbeter_1999/rawfile/bfaac0e80b23726ffe®5b02£f98b3d1d0la2ee3b7/
leloup_gonze_goldbeter_1999_a.cellml">

16 [MODEL PRE-PROCESSING]

17 </model>

18 </1listOfModels>

Listing 2.27: SED-ML model element

language

The required language attribute of data type URN is used to specify the format of the model. Ex-
ample formats are SBML (urn:sedml:language:sbml) or CellML (urn:sedml:language:cellml). The
supported languages are defined in the language references.

The use of the language attribute is required for two reasons. Firstly, it helps to decide whether or not
one is able to run the simulation, that is to parse the model referenced in the SED-ML file. Secondly,
the language attribute is also needed to decide how to handle the Symbols in the Variable class, as the
interpretation of Symbols depends on the language of the representation format.

source

To make a model accessible for the execution of a SED-ML file, the source must be specified through
either an URI or a reference to an SId of an existing Model. The URI should follow the proposed URI
Scheme for Model references.

There are three typical ways to identify a model with the source attribute: by relative path, by identifier,
or by URL.

An example for the definition of a model via a relative path URI is given in Listing 2.28. The example
defines one model m1 with the model source available from “oscillator.xml” in the same directory or
location as the SED-ML file. A source value of “./oscillator.xml” would accomplish the same thing
more explicitly, with “./” being shorthand for 'the current directory’.

1 <model id="ml" name="repressilator" language="urn:sedml:language:sbml"
2 source="oscillator.xml">

3 <listOfChanges>

4 [MODEL PRE-PROCESSING]

5 </listOfChanges>

6 </model>

Listing 2.28: The SED-ML source element, using the URI scheme

An example for the definition of a model using an URL is given in Listing 2.29. In the example one
model is defined. The language of the model is Cel1ML. The URL pointing to the model is used in the

33

https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml
https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml

source attribute.

1 <model id="ml" name="repressilator" language="urn:sedml:language:cellml"

2 source="https://models.cellml.org/exposure/bba4e39f2c7ba8af51£fd045463e7bdd3/aguda_b_1999.cellml">
3 <listOfChanges />

4 </model>

Listing 2.29: The SED-ML source element, using a URL

MIRIAM URNSs are no longer recommended due to increased difficulty in resolving them, but the scheme

is still valid and interpreters may find SED-ML files that use them. An example for the definition of a
model via an URI is given in Listing 2.30. The example defines one model m1 with the model source
available from urn:miriam:biomodels.db:BIOMDOOOOOOO012. The MIRIAM URN can be resolved into
the SBML model stored in BioModels Database under the identifier BIOMDO800OOOO12 by querying the
Biomodels webservice and requesting the ‘main’ SBML file for that biomodel. The resulting URL is
https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOOO000127filename=BIOMDOOOOOOOO12 url.
xml.

1 <model id="ml" name="repressilator" language="urn:sedml:language:sbml"
2 source="urn:miriam:biomodels.db:BIOMDOOOOOOOO12">

3 <listOfChanges>

4 [MODEL PRE-PROCESSING]

5 </listOfChanges>

6 </model>

Listing 2.30: The SED-ML source element, using the URI scheme

1listOfChanges

The listOfChanges (Figure 2.9 on page 32) contains the Changes to be applied to a particular Model.
The 1istOfChanges is optional and may contain zero to many Changes.

Listing 2.31 shows the use of the 1ist0OfChanges element.

1 <model id="m00O1" [..]>

2 <listOfChanges>
3 [CHANGE DEFINITION]
4 </listOfChanges>

s </model>

Listing 2.31: The SED-ML listOfChanges element, defining a change on a model

2.2.5 Change

The Change class allows to describe changes applied to a model before simulation (Figure 2.10 on the
next page). Changes can be of the following types:

e Changes based on mathematical calculations (ComputeChange)
e Changes on attributes of the model (ChangeAttribute)

e For XML-encoded models, changes on any XML snippet of the model’s XML representation (Ad-
dXML, ChangeXML, RemoveXML)

The Change class is abstract and serves as the base class for different types of changes, the ChangeAt-
tribute, AddXML, ChangeXML, RemoveXML, and ComputeChange.

The Change class has the mandatory attribute target which defines the target of the change. The
target attribute holds an unambiguous description of the address of the element, elements, attribute,
or attributes that are to undergo the defined changes, such as a valid XPath expression pointing to
the specified XML. For New XML, AddXML, ChangeXML, and RemoveXML, target must be an XPath
expression. This XPath expression must always select an appropriate target for the particular Change
used.

34

https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml
https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012?filename=BIOMD0000000012_url.xml

2.2.5.1

2.2.5.2

SEDBase

Change

target: TargetType

N

[[[|
ChangeAttribute RemoveXML AddXML ChangeXML

newValue: string

newXML
NewXML

Calculation 1 anyXML: XML

ComputeChange

symbol: string { use="optional" }

Figure 2.10: The SED-ML Change class

target

The target attribute holds an unambiguous description of the address of an element or attribute of a
model that is to undergo the defined changes. For XML model languages such as SBML, target must
be a valid XPath expression of data type xpath pointing to the XML that is to undergo the defined
changes.

NewXML

The newXML element provides a piece of XML code (Figure 2.10). NewXML must hold a valid piece of XML
in the appropriate namespace which after insertion into the original model must result in a valid model
file (according to the model language specification as given by the language attribute of the model).

The newXML element is used at two different places inside SED-ML Level 1 Version 4:

1. If it is used as a sub-element of the addXML element, then the XML it contains is inserted as a child
of the XML element addressed by the XPath.

2. If it is used as a sub-element of the changeXML element, then the XML it contains replaces the
XML element or elements addressed by the XPath.

Examples are given in the relevant change class definitions.

AddXML

The AddXML class specifies a snippet of XML that is added as a child of the element selected by the
XPath expression in the target attribute (Figure 2.10). The new piece of XML code is provided by the
New XML class, and may contain one or more XML elements.

An example for a change that adds an additional parameter to a model is given in Listing 2.32. In
the example the model is changed so that a parameter with ID VT is added to its list of parameters.
The newXML element adds an additional XML element to the original model. The element’s name is
parameter and it is added to the existing parent element listOfParameters that is addressed by the
XPath expression in the target attribute.

<model language="urn:sedml:language:sbml"” [..]>

1

2 <listOfChanges>

3 <addXML target="/sbml:sbml/sbml:model/sbml:listOfParameters” >

4 <newXML>

5 <sbml:parameter xmlns:sbml="http://www.sbml.org/sbml/level3/versionl/core"
6 metaid="metaid_0000010" id="V_mT" value="0.7" />

7 </newXML>

35

2.2.5.3

2.2.5.4

2.2.5.5

8 </addXML>
9 </listOfChanges>
10 </model>

Listing 2.32: The addXML element with its newXML sub-element

ChangeXML

The ChangeXML class allows you to replace any XML element(s) in the model that can be addressed
by a valid XPath expression (Figure 2.10 on the preceding page).

The XPath expression is specified in the required target attribute, and may target one or more XML
elements. The replacement XML content is specified in the New XML class, and may also contain one or
more XML elements.

An example for a change that adds an additional parameter to a model is given in Listing 2.33. In the
example the model is changed in the way that its parameter with ID V_mT is substituted by two other
parameters VmT_1 and V.mT_2. The target attribute defines that the parameter with ID VT is to be
changed. The newXML element then specifies the XML that is to be exchanged for that parameter.

1 <model [..]>

2 <listOfChanges>

3 <changeXML target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="V_mT’]" >
4 <newXML>

5 <sbml:parameter xmlns:sbml="http://www.sbml.org/sbml/level3/versionl/core"
6 metaid="metaid_0000010" id="V_mT_1" value="0.7" />

7 <sbml:parameter xmlns:sbml="http://www.sbml.org/sbml/level3/versionl/core"
8 metaid="metaid_0000050" id="V_mT_2" value="4.6"> />

9 </newXML>

10 </changeXML>

11 </listOfChanges>

12 </model>

Listing 2.33: The changeXML element

RemoveXML

The RemoveXML class can be used to delete one or more XML elements or attributes in the model that
are addressed by the XPath expression (Figure 2.10 on the previous page). The XPath is specified in
the required target attribute.

An example for the removal of an XML element from a model is given in Listing 2.34. In the example
the model is changed by deleting the reaction with ID VT from the model’s list of reactions.

1 <model [..]>

2 <listOfChanges>

3 <removeXML target="/sbml:sbml/sbml:model/sbml:listOfReactions/sbml:reaction[@id="J1"]" />
4 </listOfChanges>

5 </model>

Listing 2.34: The removeXML element

ChangeAttribute

The ChangeAttribute class allows to define updates on the attribute values of the corresponding model
(Figure 2.10 on the preceding page). ChangeAttribute requires to specify the target of the change, i.e.,
the location of the addressed attribute, and also the newValue of that attribute. Note that the target
must select a single attribute within the corresponding model.

Despite its name, the ‘attribute’ changed by this class need not be an XML attribute, and hence, its
target need not be an XPath. Every target model language may define what ‘attributes’ may be changed
by this contruct, and how to indicate those attributes.

The ChangeXML class covers the possibilities provided by the ChangeAttribute class, i.e, everything
that can be expressed by a ChangeAttribute construct can also be expressed by ChangeXML. However,
for the common case of changing an attribute value ChangeAttribute is easier to use, and so it is
recommended to use the ChangeAttribute for any changes of an attribute’s value, and to use the more
general ChangeXML for other cases.

newValue

The mandatory newValue attribute of data type string assignes a new value to the targeted attribute.

36

2.2.5.6

The example in Listing 2.35 shows the update of the value of two parameters inside an SBML model.

1 <model id="modell" name="Circadian Chaos" language="urn:sedml:language:sbml"

2 source="https://www.ebi.ac.uk/biomodels/model/download/BIOMDOOOOOO00127?filename=BIOMDOOOOOOOO12 url.
xml">

3 <listOfChanges>

4 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="V_mT’]/
@value" newValue="0.28"/>

5 <changeAttribute target="/sbml:sbml/sbml:model/sbml:1listOfParameters/sbml:parameter[@id="V_dT’]/
@value" newValue="4.8"/>

6 </listOfChanges>

7 </model>

Listing 2.35: The changeAttribute element and its newValue attribute

ComputeChange

The ComputeChange class permits to change, prior to the experiment, the numerical value of any single
element or attribute of a Model addressable by a target, based on a calculation (Figure 2.10 on page 35).
It inherits the target attribute from the Change abstract base class, as well as the standard SEDBase
attributes and children, and adds the optional attribute symbol (of type string). Its ability to perform
a calculation is described in the Calculation class. (For implementations, if multiple inheritance is not
possible, the children of Calculation should just be added directly to the ComputeChange class itself.)

The change is calculated from the Math of the Calculation, and applied to the target of the Change.
In this context, a target that points to an XML element (either the target of the ComputeChange
or a target of a child Variable) is referencing that element’s mathematical meaning. For some model
languages (such as SBML), this means that the model state must be initialized, so the element value can
be read (in the case of a Variable) or changed (in the case of a ComputeChange).

In contrast, a target that points to an XML attribute simply is referencing that attribute’s value, which
may be read or set directly in the XML document without initializing the whole model.

Note also that when a ComputeChange refers to another model, that model is not allowed to be mod-
ified by ComputeChanges which directly or indirectly refer to this model, nor to the target of this
ComputeChange. In other words, cycles in the definitions of computed changes are prohibited. This
does mean that other models may also need to be initialized (and changes applied) in order to apply the
changes to this model.

symbol

The optional symbol attribute of data type string may be used in addition to the target when the
particular value associated with the target may be described in multiple ways. In particular, a species
whose value could be expressed either as a concentration or an amount may be set by using the target
to point to the species, and setting the symbol to “KISA0:0000838” to set the concentration, or setting
the symbol to “KISAO0:0000836” to set the amount.

Listing 2.36 shows the use of the computeChange element.

1 <model [..]>

2 <listOfChanges>

3 <computeChange target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="sensor’]">
4 <listOfVariables>

5 <variable modelReference="modell" id="R" name="regulator"

6 target="/sbml:sbml/sbml:model/sbml:1istOfSpecies/sbml:species[@id="regulator’]" />
7 <variable modelReference="model2" id="S" name="sensor"

8 target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="sensor’]" />
9 <listOfVariables/>

10 <listOfParameters>

11 <parameter id="n" name="cooperativity" value="2">

12 <parameter id="K" name="sensitivity" value="le-6">

13 <listOfParameters/>

14 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

15 <apply>

16 <times />

17 <ci>S</ci>

18 <apply>

19 <divide />

20 <apply>

21 <power />

22 <ci>R</ci>

23 <ci>n</ci>

24 </apply>

25 <apply>

26 <plus />

27 <apply>

37

2.2.6

28 <power />

29 <ci>K</ci>
30 <ci>n</ci>
31 </apply>

32 <apply>

33 <power />
34 <ci>R</ci>
35 <ci>n</ci>
36 </apply>

37 </apply>

38 </apply>

39 </math>

40 </computeChange>

41 </listOfChanges>

42 </model>

Listing 2.36: The computeChange element

The example in Listing 2.36 computes a change of the variable sensor of the model model2. To do so,
it uses the value of the variable regulator coming from model modell. In addition, the calculation uses
two additional parameters, the cooperativity n, and the sensitivity K. The mathematical expression in

the mathML then computes the new initial value of sensor using the equation: S =5 x %

Simulation

A simulation is the execution of some defined algorithm(s). Simulations are described differently de-
pending on the type of simulation experiment to be performed (Figure 2.11).

N

SEDBase

Simulation

id: SlId { use="required” }

A L
algorithm Algorithm

kisaolD: string

TIistOfAIgorithmParameters 0,1] . .
ListOfAlgorithmParameters
g J

\7 algorithmParameter 0..*

AlgorithmParameter

kisaolD: string
value: string

TIistOfAIgorithmParameters 0,1

| SteadyState | OneStep UniformTimeCourse
step: double initial Time: double
outputStartTime: double
| Analysis | outputEndTime: double
ints: i { use="deprecated” }
numberOfSteps: positivelnteger

Figure 2.11: The SED-ML Simulation class

Simulation is an abstract class and serves as the container for the different types of simulation ex-
periments. SED-ML Level 1 Version 4 provides the predefined simulation classes UniformTimeCourse,
OneStep, SteadyState, and Analysis.

Each instance of the Simulation class has an unambiguous and mandatory id. An additional, optional
name may be given to the simulation. Every simulation has a required element algorithm describing the
simulation Algorithm.

1 <listOfSimulations>
2 <uniformTimeCourse [..]>
3 [SIMULATION SPECIFICATION]

38

2.2.6.1

</uniformTimeCourse>
<uniformTimeCourse [..]>
[SIMULATION SPECIFICATION]
</uniformTimeCourse>
</listOfSimulations>

Listing 2.37: The SED-ML listOfSimulations element, defining two different UniformTimecourse
simulations

S IENER- SRV

algorithm

The mandatory attribute algorithm defines the simulation algorithms used for the execution of the
simulation. The algorithms are defined via the Algorithm class.

UniformTimeCourse

The UniformTimeCourse class calculates a time course output with equidistant time points. Each in-
stance of the UniformTimeCourse class has, in addition to the elements from Simulation, the mandatory
elements initialTime, outputStartTime, outputEndTime, and numberOfSteps (Figure 2.11 on the pre-
ceding page).

Listing 2.38 shows the use of the uniformTimeCourse element.

1 <listOfSimulations>

2 <uniformTimeCourse id="s1" name="time course simulation of variable vl over 100 minutes"
3 initialTime="0" outputStartTime="0" outputEndTime="2500" numberOfSteps="1000">

4 <algorithm [..] />

5 </uniformTimeCourse>

6 </listOfSimulations>

Listing 2.38: The SED-ML uniformTimeCourse element, defining a uniform time course simulation
over 2500 time units with 1000 simulation points.

initialTime
The attribute initialTime of type double represents what the time is at the start of the simulation,
for purposes of output variables, and for calculating the outputStartTime and outputEndTime. In most

cases, this will be 0.0. The model must be set up such that intialTime is correct internally with respect
to any output variables that may be produced. Listing 2.38 shows an example.

outputStartTime

Sometimes a researcher is not interested in simulation results at the start of the simulation, i.e., the initial
time. The UniformTimeCourse class uses the attribute outputStartTime of type double, and describes
the time (relative to the intialTime) that output is to be collected. To be valid the outputStartTime
cannot be before initialTime. For an example, see Listing 2.38.

outputEndTime

The attribute outputEndTime of type double marks the end time of the simulation, relative to the
initialTime. See Listing 2.38 for an example.

numberOfSteps

When executed, the UniformTimeCourse simulation produces an output on a regular grid starting with
outputStartTime and ending with outputEndTime. The attribute numberOfSteps of type integer de-
scribes the number of steps expected to produce the result. Software interpreting the UniformTimeCourse
is expected to produce a first outputPoint at time outputStartTime and then numberOfSteps output
points with the results of the simulation. Thus a total of numberOfSteps + 1 output points will be
produced.

Just because the output points lie on the regular grid described above, does not mean that the simulation
algorithm has to work with the same step size. Usually the step size the simulator chooses will be adaptive
and much smaller than the required output step size. On the other hand a stochastic simulator might
not have any new events occurring between two grid points. Nevertheless the simulator has to produce
data on this regular grid. For an example, see Listing 2.38.

This attribute used to be named numberOfPoints, but was defined to be ‘the number of output points
minus one’, which was confusing. The old name is thus deprecated, and the new name is more in line

39

2.2.6.2

2.2.6.3

2.2.6.4

with its definition.

OneStep

The OneStep class calculates one further output step for the model from its current state. Each instance
of the OneStep class has, in addition to the elements from Simulation, the mandatory element step
(Figure 2.11 on page 38).

Listing 2.39 shows the use of the oneStep element.

1 <listOfSimulations>

2 <oneStep id="sl1" step="0.1">
3 <algorithm kisaoID="KISAO:0000019" />
4 </oneStep>

5 </listOfSimulations>

Listing 2.39: The SED-ML oneStep element, specifying to apply the simulation algorithm for another
output step of size 0.1.

step

The OneStep class has one required attribute step of type double. It defines the next output point
that should be reached by the algorithm, by specifying the increment from the current output point.
Listing 2.39 shows an example.

Note that the step does not necessarily equate to one integration step. The simulator is allowed to take
as many steps as needed. However, after running oneStep, the desired output time is reached.

SteadyState

The SteadyState represents a steady state computation (as for example implemented by NLEQ or Kin-
solve). The SteadyState class has no additional elements than the elements from Simulation (Figure 2.11
on page 38).

Listing 2.40 shows the use of the steadyState element.

1 <listOfSimulations>

2 <steadyState id="steady">
3 <algorithm kisaoID="KISAO:0000282" />
4 </steadyState >

5 </listOfSimulations>

Listing 2.40: The SED-ML steadyState element, defining a steady state simulation with id steady.

Analysis

The Analysis represents any sort of analysis or simulation of a Model, entirely defined by its child
Algorithm. If a simulation can be defined by a different Simulation, that should be used instead, so
that tools are more likely to recognize the request. But for any simultion or any analysis not covered
by SteadyState, OneStep, or UniformTimeCourse, the only thing necessary is a KiSAO term for the
Algorithm defining what to do. The following examples illustrate analyses that could not be created
with other SED-ML Simulation classes:

Listing 2.41 shows the use of the analysis element.

1 <listOfSimulations>

2 <analysis id="time_course_to_stop_condition">

3 <algorithm kisaoID="KISAO:0000263"name="NFSim">

4 <algorithmParameter kisaoID="KISAO:0000525" value="0ObsA>9"/>

5 <algorithmParameter kisaoID="KISAO:0000840" value="0" name="start time"/>

6 <algorithmParameter kisaoID="KISAO:0000841" value="10000" name="max end time"/>

7 <algorithmParameter kisaoID="KISAO:0000842" value="0.5" name="observed step size"/>
8 </algorithm>

9 </analysis >

10 </listOfSimulations>

Listing 2.41: The SED-ML analysis element, defining a time course with a stop condition (ObsA <

9).

Listing 2.42 shows the use of the analysis element.
1 <listOfSimulations>

2 <analysis id="non_uniform_time_course">
3 <algorithm kisaoID="KISAO:0000057" name="Brownian diffusion Smoluchowski method">

40

2.2.7

2.2.7.1

2272

<algorithmParameter kisaoID="KISAO:0000525" value="ObsA>9" name="stop condition"/>
<algorithmParameter kisaoID="KISAO:0000840" value="0" name="start time"/>
<algorithmParameter kisaoID="KISAO:0000841" value="100" name="max end time"/>
</algorithm>
</analysis >
</listOfSimulations>

Listing 2.42: The SED-ML analysis element, defining a non-uniform time course.

© o N o v oA

Listing 2.43 shows the use of the analysis element.

1 <listOfSimulations>
2 <analysis id="non_uniform_time_course">
3 <algorithm kisaoID="KISAO:0000662" name="Klarner ASP logical model trap space identification

method">
<algorithmParameter kisaoID="KISAO0:0000216" value="true" name="use reduced model"/>

4
5 </algorithm>
6 </analysis >

7 </listOfSimulations>

Listing 2.43: The SED-ML analysis element, defining the Klarner ASP logical model trap space
identification method, using the reduced model.

Simulation components

Algorithm

The Algorithm class has a mandatory element kisaoID which contains a KiSAO reference to the
particular simulation algorithm used in the simulation. In addition, the Algorithm has an optional
listOfAlgorithmParameters, a collection of algorithmParameter, which are used to parameterize the
algorithm.

The example given in Listing 2.37, completed by algorithm definitions results in the code given in
Listing 2.44. In the example, for both simulations a algorithm is defined. In the first simulation s1 a
deterministic approach is used (Euler forward method), in the second simulation s2 a stochastic approach
is used (Stochsim nearest neighbor).

<listOfSimulations>
<uniformTimeCourse id="s1" name="time course simulation over 100 minutes" [..]>

<algorithm kisaoID="KISAO:0000030" />

1
2
3
4 </uniformTimeCourse>

5 <uniformTimeCourse id="s2" name="time course definition for concentration of p" [..]>
6

7

8

<algorithm kisaoID="KISAO:0000021" />
</uniformTimeCourse>
</listOfSimulations>

Listing 2.44: The SED-ML algorithm element for two different time course simulations, defining two
different algorithms. KISAO:0000030 refers to the Euler forward method ; KISAO:0000021 refers
to the StochSim nearest neighbor algorithm.

listOfAlgorithmParameters

The listOfAlgorithmParameters contains the settings for the simulation algorithm used in a simu-
lation (Figure 2.11 on page 38). It may list several instances of the AlgorithmParameter class. The
listOfAlgorithmParameters is optional and may contain zero to many parameters.

Listing 2.45 shows the use of the 1istOfAlgorithmParameters element.

1 <listOfAlgorithmParameters>
2 <algorithmParameter name="absolute tolerance" kisaoID="KISAO:0000211" value="23"/>

3 </listOfAlgorithmParameters>

Listing 2.45: SED-ML listOfAlgorithmParameters element

AlgorithmParameter

The AlgorithmParameter class allows to parameterize a particular simulation algorithm. The set of
possible parameters for a particular instance is determined by the algorithm that is referenced by the
kisaoID of the enclosing algorithm element (Figure 2.11 on page 38). Parameters of simulation algorithms
are unambiguously referenced by the mandatory kisaoID attribute. Their value is set in the mandatory
value attribute. An AlgorithmParameter may also have child AlgorithmParameter elements through a
ListOfAlgorithmParameters.

41

2.2.8

Any AlgorithmParameter defined in a Simulation overrides any global AlgorithmParameter defined in
the SED-ML Document. And in the reverse, any AlgorithmParameter left undefined in a Simulation
may be defined by a global AlgorithmParameter element. Any AlgorithmParameter child of a Simulation
applies only to that individual Simulation, and assumes its previous value (if set globally) or becomes
unset (if not) outside of the context of that Simulation (for example, within a RepeatedTask).

NOTE: the global ListOfAlgorithmParameters was added to SED-ML in Level 1 Version 4. As such,
the only place to define a random seed (KISAO:0000488) for the simulation experiment as a whole in
previous versions was in a Simulation, which might be part of a RepeatedTask. Rather than indicating
that each repeat was to receive the same seed, resulting in identical traces, users would generally use
the ’seed” parameter to indicate that the experiment as a whole was to be replicable from one run to
the next. Current users of SED-ML should use a global AlgorithmParameter for this purpose, but older
versions or older files may use the previous scheme.

value

The value sets the value of the AlgorithmParameter. For XML purposes, it is of type string, but should
contain a value that makes sense for the kisaoID in question: if the KiSAO term is a value, the string
should contain a number; if the KiSAO term is a Boolean, the string should contain the string “true”
or “false”, etc. The string must be non-empty; to explicitly state that a value is not set, this should be
encoded in the string as a KISAO:0000629, which indicates that the value is Null.

1 <algorithm kisaoID="KISAO:0000032">

2 <listOfAlgorithmParameters>

3 <algorithmParameter name="absolute tolerance" kisaoID="KISAO:0000211" value="23"/>
4 </listOfAlgorithmParameters>

5 </algorithm>

Listing 2.46: The SED-ML algorithmParameter element setting the parameter value for the
simulation algorithm. KISAO:0000032 refers to the explicit fourth-order Runge-Kutta method;
KISAO:00000211 refers to the absolute tolerance.

1listOfAlgorithmParameters

The child 1istOfAlgorithmParameters of an AlgorithmParameter may contain parameters that modify
or refine the parent parameter, depending on the KiSAO term used.

1 <algorithm name="hybrid method" kisaoID="KISA0:0000352">

2 <listOfAlgorithmParameters>

<algorithmParameter name="modeling and simulation algorithm" kisaoID="KISAO:0000000" value="
KISA0:0000019">

w

4 <listOfAlgorithmParameters>

5 <algorithmParameter name="absolute tolerance" kisaoID="KISAO:0000211" value="1e-07"/>

6 <algorithmParameter name="integration method" kisaoID="KISAO:0000475" value="BDF"/>

7 <algorithmParameter name="interpolate solution" kisaoID="KISAO:0000481" value="true"/>

8 <algorithmParameter name="iteration type" kisaoID="KISA0:0000476" value="Newton"/>

9 <algorithmParameter name="linear solver" kisaoID="KISA0:0000477" value="Dense"/>

10 <algorithmParameter name="lower half-bandwidth" kisaoID="KISAO:0000480" value="0"/>

11 <algorithmParameter name="maximum number of steps" kisaoID="KISAO:0000415" value="500"/>

12 <algorithmParameter name="maximum step size" kisaoID="KISA0:0000467" value="0"/>

13 <algorithmParameter name="preconditioner" kisaoID="KISAO:0000478" value="Banded"/>

14 <algorithmParameter name="relative tolerance" kisaoID="KISAO:0000209" value="1e-07"/>

15 <algorithmParameter name="upper half-bandwidth" kisaoID="KISAO:0000479" value="0"/>

16 </listOfAlgorithmParameters>

17 </algorithmParameter>

18 <algorithmParameter name="modeling and simulation algorithm" kisaoID="KISAO:0000000" value="
KISA0:0000282">

19 <listOfAlgorithmParameters>

20 <algorithmParameter name="linear solver" kisaoID="KISA0:0000477" value="Dense"/>

21 <algorithmParameter name="lower half-bandwidth" kisaoID="KISAO:0000480" value="0"/>

22 <algorithmParameter name="maximum iterations"” kisaoID="KISAO:0000486" value="200"/>

23 <algorithmParameter name="upper half-bandwidth" kisaoID="KISAO:0000479" value="0"/>

24 </listOfAlgorithmParameters>

25 </algorithmParameter>

26 </listOfAlgorithmParameters>

27 </algorithm>

Listing 2.47: A SED-ML algorithmParameter element defining a mized simulator, each with their
own set of algorithm parameters.

AbstractTask

In SED-ML the subclasses of AbstractTask define which Simulations should be executed with which
Models in the simulation experiment. AbstractTask is the base class of all SED-ML tasks, i.e. Task and

42

2.2.8.1

2.2.8.2

RepeatedTask. It inherits the attributes and children of SEDBase, but changes the id attribute to be
required instead of optional.

SEDBase

I

AbstractTask

id: SId { use:“required” }

A

Task RepeatedTask ParameterEstimationTask ﬁ

modelReference: SIdRef
simulationReference: SIdRef

Figure 2.12: The SED-ML AbstractTask and Task classes. The RepeatedTask and ParameterFEstima-
tionTask classes are defined below.

Task

A Task links a Model to a certain Simulation description via their respective identifiers (Figure 2.12),
using the modelReference and the simulationReference. The task class inherits the attributes and
children of the AbstractTask.

modelReference

The modelReference attribute of type SIdRef must refer to a Model. Inside a RepeatedTask, the state
of the model may have been changed, otherwise, the Model is to assume to its initial state.

simulationReference

the simulationReference attribute of type SIdRef must refer to a Simulation.

In SED-ML it is only possible to link one Simulation description to one Model at a time. However, one
can define as many tasks as needed within one experiment description. Please note that the tasks may
be executed in any order, as determined by the implementation.

In the example, a simulation setting simulationl is applied first to modell and then to model2.

1 <listOfTasks>

2 <task id="t1" name="task definition" modelReference="modell"

3 simulationReference="simulationl" />

4 <task id="t2" name="another task definition" modelReference="model2"
5 simulationReference="simulationl" />

6 </listOfTasks>

Listing 2.48: The task element

Repeated Task

The RepeatedTask (Figure 2.13 on the next page) provides a looping construct, allowing complex tasks
to be composed from individual tasks. The RepeatedTask performs a specified task (or sequence of tasks
as defined in the 1istOfSubTasks) multiple times (where the exact number is specified through a Range
construct as defined in range), while allowing specific quantities in the model or models to be altered at
each iteration (as defined in the listOfChanges).

43

SEDBase i

AbstractTask

RepeatedTask

range: SldRef
resetModel: boolean ComputeChange ﬁ
concatenate: boolean { use="optional" }

=

listOfChanges 0.1]

ListOfChanges
setValue 0.*
SetValue

modelReference: SldRef
range: SIdRef { use="optional" }

listOfRanges [K |
| ListOfRanges |
T range, 1.*
frange] I Range ﬁ
listOfSubTasks [K l
| ListOfSubTasks |
T subTask 1.*
SubTask
task: SIdRef
order: integer { use="optional" }

_T listOfChanges 0,1 .
| ListOfChanges

Figure 2.13: The SED-ML RepeatedTask class

The RepeatedTask inherits the required attribute id and optional attribute name from AbstractTask. Ad-
ditionally it has the two required attributes range and resetlModel, an optional attribute concatenate,
and the child elements listOfRanges (required), listOfChanges (optional) and listOfSubTasks (re-
quired).

The order of activities within each iteration of a RepeatedTask is as follows:
e The entire model state for any involved Model is reset if specified by the resetModel attribute.

e Any changes to the model or models specified by SetValue objects in the 1istOfChanges are applied
to each Model.

Then, for each SubTask child of the RepeatedTask, in the order specified by its order attribute:

e Any AlgorithmParameter children of the associated Simulation are applied (with the possible ex-
ception of the seed; see Section 2.2.7.2).

e Any SetValue children of the SubTask are applied to the relevant Model.

e The referenced Task or RepeatedTask of the SubTask is executed.

Listing 2.49 shows the use of the repeatedTask element. In the example, taskl is repeated three times,
each time with a different value for a model parameter w.

1 <task id="taskl" modelReference="modell" simulationReference="simulationl" />
2 <repeatedTask id="task3" resetModel="false" range="current"
3 xmlns:s="http://www.sbml.org/sbml/level3/versionl/core’>

44

4 <listOfRanges>

5 <vectorRange id="current">
6 <value> 1 </value>

7 <value> 4 </value>

8 <value> 10 </value>

9 </vectorRange>

10 </listOfRanges>

11 <listOfChanges>

12 <setValue target="/s:sbml/s:model/s:listOfParameters/s:parameter[@id="w’]" modelReference="modell">
13 <listOfVariables>

14 <variable id="val" name="current range value" target="#current" />

15 </listOfVariables>

16 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

17 <ci> val </ci>

18 </math>

19 </setValue>

20 </listOfChanges>

21 <listOfSubTasks>

22 <subTask task="taskl" />
23 </1listOfSubTasks>

24 </repeatedTask>

Listing 2.49: The repeatedTask element

range

The RepeatedTask has a required attribute range of type SIdRef. It specifies which range defined in the
listOfRanges this repeated task iterates over. Listing 2.49 shows an example of a repeatedTask iterating
over a single range comprising the values: 1, 4 and 10. If there are multiple ranges in the 1istOfRanges,
then only the master range identified by this attribute determines how many iterations there will be in
the repeatedTask. All other ranges must allow for at least as many iterations as the master range, and
will be moved through in lock-step; their values can be used in setValue constructs.

resetModel

The repeatedTask has a required attribute resetModel of type boolean. It specifies whether the model
or models should be reset to the initial state before processing an iteration of the defined subTasks. Here
initial state refers to the state of the model or models as given in the 1istOfModels.

In the example in Listing 2.49 the repeated task is not to be reset, so a change is made, taskl is carried
out, another change is made, then taskl continues from there, another change is applied, and taskl is
carried out a last time.

When the resetModel attribute is set to “true”, the individual repeats may be executed in parallel.

concatenate

The RepeatedTask has an optional attribute concatenate of type boolean. It specifies whether the
output of the subtasks should be appended to the results of the previous outputs (“true”), or whether
it should be added in parallel, as a new dimension of the output (“false”).

If this attribute is not defined, the interpreter may either concatenate or parallelize the results. As this
makes the results less comparable between interpreters, it is strongly suggested that this attribute be
defined.

1listOfChanges

The optional 1istOfChanges element contains one or many SetValue elements. These elements allow the
modification of values in the model or models prior to the next iteration of the RepeatedTask.

1istOfSubTasks

The required 1istOfSubTasks contains one or more subTasks that specify which Tasks are performed in
every iteration of the RepeatedTask. All subTasks have to be carried out sequentially, each continuing
from the current model state or states (i.e. as at the end of the previous subTask). If the concatentate
attribute is set “true”, the results are concatenated (thus appearing identical to a single complex simula-
tion), and if set “false”, the results are added to a matrix with the additional dimension of the repeated
task. The order in which to run multiple subTasks must be specified using the order attribute on the
subTask. Subtasks can also be executed in parallel when they do not share any state. Interpreters can
determine this from the descriptions of the subtasks.

45

2.2.9

2.2.9.1

2.29.2

1 <listOfSubTasks>

2 <subTask task="taskl" order="2"/>
3 <subTask task="task2" order="1"/>
4 </listO0fSubTasks>

Listing 2.50: The subTask element. In this example the task task2 must be executed before taskl.

listOfRanges

The 1istOfRanges defines one or more ranges used in the repeatedTask.

Task components

SubTask

A SubTask (Figure 2.13 on page 44) defines the subtask which is executed in every iteration of the
enclosing RepeatedTask. The SubTask has a required attribute task that references the id of another
AbstractTask. The order in which to run multiple subTasks must be specified via the required attribute
order. It may contain a child ListOfChanges to specify any changes that apply at the beginning of the
particular subtask, in contrast to the ListOfChanges child of the RepeatedTask itself, which specifies
changes that apply before any of the subtasks.

task

The required element task of data type SIdRef specifies the AbstractTask executed by this SubTask.

order

The required attribute order of data type integer specifies the order in which to run multiple subTasks in
the 1istOfSubTasks. To specify that one subTask should be executed before another its order attribute
must have a lower number (e.g. in Listing 2.50).

Leaving the order undefined for a SubTask implies that the SubTask may be executed before or after
any other SubTask. Giving the same order to multiple SubTask elements is an explicit statement that
each SubTask in the group may be executed before or after any other SubTask in the group. It is
recommended that users always explicitly set the order attribute for this reason.

Any order value does not imply whether the SubTask may be executed in parallel with other SubTask
elements. Interpreters who wish to parallelize subtasks should operate from the assumption that in the
default case, each SubTask would be executed in some order, and adjust accordingly.

1listOfChanges

The SetValue children of the ListOfChanges of this SubTask define changes to apply to the model state
or states before this SubTask is carried out. This allows model changes between individual SubTask
elements, perhaps based on the changed state of the model itself. The set of all SetValue children of the
first SubTask are applied after the set of SetValue children of the RepeatedTask itself.

SetValue

The SetValue class (Figure 2.13 on page 44) allows the modification of a Model. Each SetValue
in the ListOfChanges child of the RepeatedTask fires before each repeat, and each SetValue in the
ListOfChanges child of a SubTask fires before the execution of that SubTask.

SetValue inherits from the ComputeChange class, which allows it to compute arbitrary expressions
involving a number of variables and parameters. SetValue inherits the standard attributes and children
from SEDBase, a required target and optional symbol from ComputeChange, and adds a mandatory
modelReference attribute and the optional attribute range.

The value to be changed is identified via the combination of the attributes modelReference, symbol, and
target, in order to select an implicit or explicit variable within the referenced model.

The Math contains the expression computing the value by referring to optional parameters, variables or
a range. In contrast to functionalRange, variable references in setValue retrieve always the current value
of the model variable or range at the current iteration of the enclosing repeatedTask.

46

1 <listOfChanges>

2 <setValue target="/s:sbml/s:model/s:listOfParameters/s:parameter[@id="w’]"
3 range="current" modelReference="modell">

4 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

5 <ci> current </ci>

6 </math>

7 </setValue>

8 </listOfChanges>

Listing 2.51: A setValue element setting w to the values of the range with id current.

modelReference

The required element modelReference of data type SIdRef specifies the Model this SetValue is to modify.
Each SetValue elements in the same RepeatedTask may potentially reference a different Model.

range

The optional attribute range of data type SIdRef, if defined, must reference a Range child of the parent
RepeatedTask.

As in functionalRange, the attribute range may be used as a shorthand to specify the id of another
Range. The current value of the referenced range may then be used within the Math defining this
FunctionalRange, just as if that range had been referenced using a variable element, except that the id
of the range is used directly. In other words, whenever the expression contains a ci element that contains
the value specified in the range attribute, the value of the referenced range is to be inserted.

2.2.9.3 Range

The Range class is the abstract base class for the different types of ranges, i.e. UniformRange, Vector-
Range, FunctionalRange, and DataRange (Figure 2.14).

The Range is the iterative element of the repeated simulation experiment. Each Range defines a collection
of values to iterate over. Its id may be used as the target of a Variable within the RepeatedTask by
pre-pending a ‘#’ (i.e. “#rangeId”). It is used in that context to mean the value of the range for the
current iteration of the RepeatedTask.

SEDBase
[
Range
I I I
UniformRange VectorRange DataRange

start: double sourceReference: SIdRef
end: double value 1.

iats— = Value -

{ use="deprecated” } , Calculation

numberOfSteps: integer {content: double}
type: string %

FunctionalRange

range: SldRef {use="optional’}

Figure 2.14: The SED-ML Range class

2.2.9.3.1 UniformRange

The UniformRange (Figure 2.14) allows the definition of a Range with uniformly spaced values. In
this it is quite similar to what is used in the UniformTimeCourse. The UniformRange is defined via

47

22932

22933

2.29.34

three mandatory attributes: start, the start value; end, the end value and numberOfSteps which defines
defines the number of points in addition to the start value (the actual number of points in the range
will be numberOfSteps+1). A fourth attribute type that can take the values linear or log determines
whether to draw the values logarithmically (with a base of 10) or linearly.

The numberOfSteps attribute used to be called numberOfPoints, but was changed to better reflect the
meaning of the attribute. The old attribute name is allowed, but is deprecated. The SED-ML meaning
of both attributes is the same, and has not changed.

For example, the following UniformRange will produce 181 values uniformly spaced on the interval [0, 10]
in ascending order.
1 <uniformRange id="current" start="0.0" end="10.0" numberOfSteps="100" type="linear" />

Listing 2.52: The UniformRange element

The following logarithmic example generates the three values 1, 18 and 160.
1 <uniformRange id="current" start="1.0" end="100.0" numberOfSteps="2" type="log" />

Listing 2.53: The UniformRange element with a logarithmic range.

VectorRange

The VectorRange (Figure 2.14 on the previous page) describes an ordered collection of real values, listing
them explicitly within child value elements.

For example, the range below iterates over the values 1, 4 and 10 in that order.

1 <vectorRange id="current">

2 <value> 1 </value>
3 <value> 4 </value>
4 <value> 10 </value>

s </vectorRange>

Listing 2.54: The VectorRange element

Value

The Value (Figure 2.14 on the preceding page) describes a single value, e.g., the Values in a VectorRange.

FunctionalRange

The FunctionalRange (Figure 2.14 on the previous page) constructs a range through calculations that
determine the next value based on the value(s) of other range(s) or model variables. In this it is similar
to the ComputeChange element, and shares some of the same child elements (but is not a subclass of
ComputeChange). It consists of an optional attribute range, two optional elements ListOfVariables and
ListOfParameters, and a required element Math.

The optional attribute range of type SIdRef may be used as a shorthand to specify the id of another
Range. The current value of the referenced range may then be used within the function defining this
FunctionalRange, just as if that range had been referenced using a variable element, except that the id
of the range is used directly. In other words, whenever the expression contains a ci element that contains
the value specified in the range attribute, the value of the referenced range is to be inserted.

The value of any Variable child of a FunctionalRange should be calculated before the 1istOfChanges
have been applied to the models in the RepeatedTask and before the first simulation begins, and will
not be affected by any SubTask in the RepeatedTask.

For example:

1 <functionalRange id="current" range="index"

2 xmlns:s="http://www.sbml.org/sbml/level3/versionl/core’>

3 <listOfVariables>

4 <variable id="w" name="current parameter value" modelReference="model2"
5 target="/s:sbml/s:model/s:listOfParameters/s:parameter[@id="w’]" />
6 </listOfVariables>

7 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

8 <apply>

9 <times/>

10 <ci> w </ci>

11 <ci> index </ci>

12 </apply>

13 </math>

48

14 </functionalRange>

Listing 2.55: An example of a functionalRange where a parameter w of model model2 is multiplied
by index each time it is called.

Here is another example, this time using the values in a piecewise expression:

1 <uniformRange id="index" start="0" end="10" numberOfSteps="100" />
2 <functionalRange id="current" range="index">

3 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">
4 <piecewise>

5 <piece>

6 <cn> 8 </cn>

7 <apply>

8 <1lt />

9 <ci> index </ci>
10 <cn> 1 </cn>

11 </apply>

12 </piece>

13 <piece>

14 <cn> 0.1 </cn>

15 <apply>

16 <and />

17 <apply>

18 <geq />

19 <ci> index </ci>
20 <cn> 4 </cn>
21 </apply>

22 <apply>

23 <1t />

24 <ci> index </ci>
25 <cn> 6 </cn>
26 </apply>

27 </apply>

28 </piece>

29 <otherwise>

30 <cn> 8 </cn>

31 </otherwise>

32 </piecewise>

33 </math>

34 </functionalRange>

Listing 2.56: A functionalRange element that returns 8 if index is smaller than 1, 0.1 if index is
between 4 and 6, and 8 otherwise.

2.2.9.3.5 DataRange

The DataRange (Figure 2.14 on page 47) constructs a range by reference to external data. It inherits
from Range, and adds the required atribute sourceReference of type SIdRef. The sourceReference
must point to a DataDescription with a single dimension, whose values are used as the values of the
range.

For example:
1 <dataRange id="current" sourceReference="dosage_times" />

Listing 2.57: An ezample of a dataRange which tracks a variable from an external file.

2.2.10 ParameterEstimationTask

The ParameterEstimationTask inherits from AbstractTask, and defines a parameter estimation exper-
iment: given a set of constraints, what are the optimal parameter values for a particular model? A
ParameterEstimationTask calculates optimal AdjustableParameter values for every FitExperiment child
of the task. It provides access to the optimal values for the estimated parameters, and will also change
the model state such that the estimated parameters will have those values. If used in a ParameterEs-
timationResultPlot, WaterfallPlot, or ParameterEstimationReport, various other pieces of information
will be output, as defined in those classes.

49

SEDBase ﬁ
I

|
AbstractTask

L

ParameterEstimationTask

modelReference: SIdRef

L 3

algorithm
g Algorithm N|

objective Y
[oby / Objective

listOfFitParameters

ListOfAdjustableParameters

? adjustableParameter 1.7

AdjustableParameter —

listOfFitExperiments

ListOfFitExperiments

FitExperiment

? fitExperiment 1.* ﬁ‘

Figure 2.15: The SED-ML ParameterEstimationTask class

A ParameterEstimationTask has four required children: an Algorithm, an Objective, at least one Ad-
justableParameter in a ListOfAdjustableParameters, and at least one FitExperiment in a ListOfFitEx-
periments. It also has a required modelReference attribute of type SIdRef.

modelReference

The modelReference attribute of data type SIdRef is used to reference a Model in the same SED-ML
Document. This model is the one to be used for parameter fitting.

algorithm

The algorithm child of a ParameterEstimationTask defines the Algorithm to be used for parameter
fitting. Any algorithm parameters must be included as child AlgorithmParameter elements. The Algo-
rithm class is defined in section 2.2.7.1. One particular algorithm parameter is KiSAO:0000498 (“number
of runs”), which can be used to set up a repeated ParameterEstimationTask.

objective

The objective child of the ParameterEstimationTask defines the objective function to be minimized
during the parameter estimation. In Level 1 Version 4, there is only a single Objective option: the
LeastSquareObjectiveFunction (called “leastSquareObjectiveFunction” instead of “objective”). In
future versions of SED-ML, other objectives may be introduced that cover additional use cases.

adjustableParameters

The required ListOfAdjustableParameters child of a ParameterEstimationTask must contain at least one
AdjustableParameter. Each AdjustableParameter defines a single parameter to be estimated.

50

2.2.10.1

fitExperiments

The required ListOfFitExperiments child of a ParameterEstimationTask must contain at least one Fit-
Experiment. Each FitExperiment defines a mapping between experimental data and observables from
the model as well as any initial conditions that need to be applied to the model.

Objective

The Objective inherits from SEDBase, and does not introduce any new attributes or children. It is
an abstract base class intended to (eventually) organize the different objective function possibilities for
parameter estimation tasks.

A\
SEDBase \

T

Objective

T

LeastSquareObjectiveFunction

Figure 2.16: The SED-ML Objective and LeastSquareObjective Function classes

2.2.10.2 LeastSquareObjectiveFunction

The LeastSquareObjectiveFunction inherits from Objective, and does not introduce any new attributes
or children. Its use indicates that the ParameterEstimationTask is to minimize the least squares of the
residuals of the fit experiments to estimate the parameters.

The particular method used to determine the least squares can be defined through the use of Algorithm-
Parameters on the Algorithm of the ParameterEstimationTask.

2.2.10.3 AdjustableParameter

The AdjustableParameter inherits from SEDBase, and adds a required attribute target of type Target,
a required child Bounds, and an optional child ListOfExperimentReferences with zero or more Experi-
mentReference elements, and an optional attribute initalValue of type double.

The target of an AdjustableParameter must point to an adjustable element of the Model referenced by
the parent ParameterEstimationTask. This element is one of the elements whose value can be changed
by the task in order to optimize the fit experiments.

51

2.2.10.4

2.2.10.5

SEDBase ﬁ

AN

AdjustableParameter

target: TargetType
initialValue: double {use="optional" }

¢

bounds

Bounds

upperBound: double
lowerBound: double
scale: ScaleType

listOfExperimentReferences 0,1

ListOfExperimentReferences

YexperimentReference 0..*

ExperimentReference

experiment: SldRef

Figure 2.17: The SED-ML AdjustableParameter, Bounds, ListOfExperimentReferences, and Fxperi-
mentReference classes

The initialValue, if defined, is the value that the AdjustableParameter is to be set at the beginning of
the ParameterEstimationTask. Otherwise, the value of the AdjustableParameter at the model’s current
state is used, unless that value is outside the upperBound and lowerBound, in which case any value
between or including those values is allowed.

The required Bounds child of the AdjustableParameter defines the allowed range of values for the targeted
element.

If an AdjustableParameter has no ExperimentReference children, it is adjusted for every FitExperiment.
If an AdjustableParameter has one or more ExperimentReference children, it is only adjusted in those
experiments; in all other experiments it retains its initial value (the value of the optional initialValue
of the AdjustableParameter, if defined, or the value it obtained from the model, if not).

Bounds

A Bounds object defines the allowable range of values for an AdjustableParameter. A Bounds inherits
from SEDBase, and adds three required attributes (upperBound and lowerBound, both of type double,
and scale, of type ScaleType), and one optional attribute (initialValue, of type double).

The lowerBound defines the lowest value the parent AdjustableParameter may take during the Param-
eterEstimationTask, and upperBound the highest, with both values being legal outputs of the system.
The lowerBound must be less than or equal to the upperBound, though if it is equal, there is nothing to
optimize, since only that single value is allowed.

The scale, of type ScaleType, defines the structure of the search space between the upper and lower
bounds. The allowed values are:

e linear: The bounds enclose a linear search space
e log: The bounds enclose a search space scaled by its natural log.

e logl0: The bounds enclose a search space scaled by its log base-10 values.

ExperimentReference

An ExperimentReference inherits from SEDBase and adds the single required attribute experiment, of
type SIdRef, which must point to a FitExperiment in the same ParameterEstimationTask.

52

2.2.10.6

2.2.10.7

FitExperiment

The FitExperiment inherits from SEDBase, and adds the required attribute type of type Experiment-
Type, a required Algorithm child, and a required ListOfFitMappings child which must in turn contain
one or more FitMapping children.

SEDBase

o

FitExperiment

type: ExperimentType

+

algorithm N\
E Algorithm N

listOfFitMappings

ListOfFitMappings

7 fitMapping 1.

FitMapping

type: MappingType

dataSource: SldRef

target: SIdRef

weight: positive double { use="optional" }
pointWeight: SIdRef { use="optional" }

Figure 2.18: The SED-ML FitEzperiment, ListOfFitMappings, and FitMappings classes

A FitExperiment describes an experiment for which there are known experimental conditions, and ex-
pected experimental output. The differences between the expected experimental output and the simu-
lated output is used by the Objective to determine the optimal values to use for the AdjustableParame-
ters.

The type attribute indicates whether the experiment is a time-course experiment (“timeCourse”), or a
steady-state experiment (“steadyState”).

The Algorithm of a FitExperiment describes the algorithm (time course or steady state), and can also
be used to define any algorithm parameters of the experiment.

The FitMapping children are used to map externallly-set experimental conditions, observables, and time
(in time course experiments) to the model.

FitMapping

A FitMapping inherits from SEDBase, and adds three required attributes dataSouce and target, both of
type SIdRef, type of type MappingType, and two optional attributes weight of type positive double,
and pointWeight of type SIdRef. A FitMapping is used to correlate elements of a model simulation with
data for that simulation, whether time, inputs (experimental conditions) or outputs (observables).

The type is of type MappingType, and may take one of the following three values:

e time: Used only in time course simulations, a “time” FitMapping maps the time points of the
observables to the time points of the simulated output. This also serves to declare what time
points must be output by the simulation: unlike a UniformTimeCourse, a FitExperiment time
course must at least output the time points mapped here, so that the observables may be directly
compared to each other. (Note that here as in elsewhere in SED-ML, ‘time’ is used as a common
label of what is more formally an ‘independent variable’ for some simulators.)

53

2.2.11

e experimentalCondition: Any FitMapping of type “experimentalCondition” maps a single value
to a model element. The model element must be set to the value as part of the model’s initial
condition.

e observable: An “observable” FitMapping maps the output of the simulation to a set of data.
These data are used by the Objective to calculate the goodness of fit.

The dataSource is an SIdRef to a DataSource in the SED-ML Document. This is a pointer to the
expected values of the “observable” FitMappings, to the time values of “time” FitMappings, or the
target initial conditions of “experimentalConditions” FitMappings.

The target is an SIdRef to a DataGenerator in the SED-ML Document. Any Variable in the referenced
DataGenerator must contain a modelRef to a Model referenced in an AdjustableParameter that applies
to this FitExperiment.

The weight or pointWeight attributes are used for “observable” FitMappings to weight the contribution
of that particular observable to the Objective function. For every FitMapping of type “observable”,
either weight or pointWeight must be defined. For FitMappings with type of “experimentalCondition”
or “time”, neither attribute may be defined.

If weight is defined, that value is used as the weight for all values in the series. If pointWeight is defined
instead, it must be an SIdRef to a DataGenerator or DataSource with the same dimensionality as the
dataSource. Each value in the referenced pointWeight is then used as the weight of the comparison of
the corresponding dataSource and target.

No weight may be negative or infinite. A NaN may be used in a pointWeight vector for missing data.
Commonly, all weights will have a value between zero and one.

DataGenerator

The DataGenerator class prepares the raw simulation results for later output (Figure 2.19). It encodes
the post-processing to be applied to the simulation data. The post-processing steps could be anything,
from simple normalisations of data to mathematical calculations. It inherits from Calculation, changing
the id attribute to be required instead of optional.

N

Calculation

I

DataGenerator

id: Sld { use="required" }

Figure 2.19: The SED-ML DataGenerator class.

Variable objects in DataGenerator elements may be scalar or multidimensional. If the Math of a Data-
Generator attempts to apply functions to multi-dimensional elements, those functions always apply to
the individual scalar values of that data. If multiple multidimensional Variable ids are used in the same
Math, those ids must each have the same dimensions as each other. No vector or matrix algebra functions
such as dot products or cross products are allowed.

A Variable in a DataGenerator may use the id of a DataSource as its target, pre-pended by a ‘#’, i.e.
“#dataSourceId”. This Variable may be multidimensional, and if so, must follow the above strictures.

When multidimensional data is output to a Report, information about the dimensions should be stored
in the output format chosen for the report, such as CSV or HDF5.

It is left up to interpreters how to store or output ‘ragged’ matrices, where the data in some dimensions
might not have the same lengths as each other. One practice is to leave the data in this uneven state;
another option is to fill out the ‘missing’ data with NaNs. The only requirement is that mathematical
operations should not be affected by this choice. For example, the ‘mean’ of a vector should be the same

54

2.2.12

whether or not it was extended with NaNs.

Output from multiple models

It is possible to create a RepeatedTask that affects multiple models through different SubTask children.
In this situation, individual Variable children of a DataGenerator must define both a taskReference to
the RepeatedTask and modelReference so it’s clear which specific element is being tracked. However,
the question then becomes: what value does that Variable take while the RepeatedTask is performing a
Simulation in a SubTask that does not involve that Model? In this situation, the Variable is assumed
to retain its last known value (should it have one) for the duration of the Simulation (which will be its
initialized value if no Simulation has been performed yet that affects that Variable). If the model has no
initialized value for the element, its value is assumed to be NalV.

This is an unusual situation, so much so that different simulators may create different outputs, or fail
to implement support for it at all. For this reason, it is recommended that all SubTask elements in a
RepeatedTask reference the same Model.

Listing 2.58 shows the use of the dataGenerator element. In the example the 1istOfDataGenerator
contains two dataGenerator elements. The first one, d1, refers to the task definition taskl (which it-
self refers to a particular model), and from the corresponding model it reuses the symbol time. The
second one, d2, references a particular species defined in the same model (and referred to via the
taskReference="task1"). The model species with id PX is reused for the data generator d2 without
further post-processing.

1 <listOfDataGenerators>

2 <dataGenerator id="d1" name="time">

3 <listOfVariables>

4 <variable id="time" taskReference="taskl" symbol="KISAO0:0000832" />
5 </listOfVariables >

6 <listOfParameters />

7 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

8 <ci> time </ci>

9 </math>

10 </dataGenerator>

11 <dataGenerator id="d2" name="LaCI repressor">

12 <listOfVariables>

13 <variable id="v1" taskReference="taskl"

14 target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PX']" />
15 </listOfVariables>

16 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

17 <math:ci>vl</math:ci>

18 </math>

19 </dataGenerator>

20 </listOfDataGenerators>

Listing 2.58: Definition of two dataGenerator elements, time and LaCl repressor

Output

The abstract Output class describes how the results of a simulation are presented (Figure 2.20). The
available output classes are Plot, Report, ParameterEstimationReport, and Figure. The data used in an
Output is provided via the DataGenerator class.

SEDBase

Output

L

[1 1

Plot Report ﬁ Figure ﬁ

ParameterEstimationReport

Figure 2.20: The definition of the SED-ML Output class. The subclasses are defined below.

55

2.2.12.1

The Output class inherits the id and name attributes from SEDBase, as well as the optional annotation
and notes chidren. When producing a printed table or figure, users may want to use the name as the
title, and the notes as the legend.

The output of a SED-ML file may be used to compare simulation executions from the same tool or from
different tools. As such, interpreters may choose to focus on the output of a SED-ML file, and execute
only the tasks necessary to produce this output. Repeated executions of the same SED-ML should always
produce comparable output. When a stochastic run is given a seed, interpreters should be aware that
users may expect to get identical results from repeated runs on the same architecture, including when
tasks are run in parallel.

Plot

The Plot is an abstract base class for two- and three-dimensional plot outputs. It defines the size and
axes of a plot, as well as whether or not a legend should be displayed.

SEDBase

Output

Plot

legend: Boolean { use="optional" }
height: double {use="optional" }
width: double {use="optional" }

VAN 2

XAXis 0,1

Axis

yAxis 0,1 type: AxisType

min: double { use="optional" }
max: double { use="optional" }
grid: Boolean { use="optional" }
style: SIdRef {use="optional” }
reverse: Boolean { use="optional" }

— Plot2D
¢
ightYAxi 1
rightYAxis 0, Axis ﬁ

listOfCurves 0,1

ListOfCurves

0.*
M AbstractCurve ﬁ—

— Plot3D

AXi 0,1)
zAxis Axis ﬁ

listOfSurfaces 0,1

ListOfSurfaces

surface 0..*
Surface ﬁ—

Figure 2.21: The definition of the SED-ML Plot, Plot2D, Plot3D, Axis, ListOfCurves, and ListOf-
Surfaces classes. The AbstractCurve and Surface classes are defined below.

56

2.2.12.2

2.2.12.3

2.2.124

The Plot class inherits the attributes and children from SEDBase, and adds three optional attributes:
legend, of type Boolean, height of type double, and width of type double. It also defines two optional
Axis children, an xAxis and a yAxis.

legend

The legend attribute defines whether a legend should be displayed (“true”) or not (“false”). The
position and styling of the legend is unspecified. If the attribute is not defined, it is up to the tool
whether to display the legend or not, and does not mean that the attribute has a default value of
“false”.

height and width

The height and width elements, both of type double, may be used to define the size of the plot, in pixels
(or the equivalent in the application’s display environment). If either is not defined, the application may
choose what size to display the plot.

xAxis and yAxis

The optional xAxis and yAxis children, each of type Axis, define the x and y axes (respectively) by which
the Curve or Surface children are to be interpreted. If either child is omitted, that axis is undefined,
and it is up to the tool whether and how to display any necessary axes, and to decide whether that axis
should be linear or logarithmic.

Plot2D

The Plot2D class is used for two dimensional plot outputs. In addition to the features it inherits from
Plot, it may contain any number of Curve definitions in the 1istOfCurves, as well as an optional child
rightYAxis.

rightYAxis

If a Plot2D contains a child rightYAxis, this defines a new Y axis, displayed on the right, which any
of the Curve children may be scaled to. Each Curve contains the information about which axis it is to
be scaled to. The rightYAxis is to be displayed on the right of the plot, and may differ significantly in
scale and range from the yAxis. A Plot2D with no yAxis may not have a rightYAxis.

listOfCurves

Each child AbstractCurve of a Plot2D represents a line to be displayed on the plot. The AbstractCurve
itself will define what data it contains, and how it should be displayed.

Plot3D

The Plot3D class is used for three dimensional plot outputs (Figure 2.20 on page 55). In addition to
the elements it inherits from Plot, the Plot3D may contain a number of child Surface definitions in a
listOfSurfaces, and may additionally define a zAxis child, of type Axis.

listOfSurfaces

Each child Surface of a Plot3D represents a surface to be displayed on the plot. The Surface itself will
define what data it contains, and how it should be displayed.

zAXis

When a Plot3D contains a child zAxis, that Axis defines the characteristics of the z axis. If no zAxis is
provided, those characteristics are undefined, and the tool may choose how and whether to display that
axis, as well as what type it is (linear or logarithmic).

Axis

The Axis class is used to define whether an axis for a given Plot is linear or logarithmic, and how to
display it. It inherits the attributes and children from SEDBase, and adds the required attribute type
of type AxisType (either ‘linear’ or ‘logl0’), as well as the optional attributes min and max, both of type

57

double, grid of type boolean, and style of type SIdRef.

name and id

The Axis class inherits the name and id attributes from SEDBase. The name, if present, should be used
as the label for the axis. If it is not present, the id may be used.

type

The type value of “linear” means the axis should be scaled linearly, while a value of “1og1®” indicates
it should have a logl0 scale. Other scalings are not possible in this version of SED-ML. This attribute
replaces the “log” attributes that used to be present on Curve objects in previous versions of SED-ML.

min and max

The min and max values indicate the minimum and maximum values for the axis. Data points outside of
this range should not be shown on the parent Plot. Either value may be set or not, and if not set, a value
must be chosen for display that is less than (for min) or greater than (for max) the most extreme value
along that axis for any Curve or Surface in that Plot. Do note that in some cases, a given Curve may
not have any data points associated with one Y Axis, as its data may be associated with the alternative
Y Axis.

Note that min and max will have the same units as the data plotted along it, regardless of the value of the
type. An axis with a min value of “1” and a max value of “100” will either be plotted with ’50” halfway
between those two extremes if the type is “linear”, or with 10" halfway between those two extremes if
the type is “log10”.

grid

The grid attribute indicates whether grid lines should (“true”) or should not (“false”) be displayed in
the Plot for tick marks along that axis. If the grid attribute is not defined, this means it is up to the
tool whether or not to display the grid lines; it does not have a default value of “false”.

style

The style attribute, if present, must be an SIdRef to a Style in the same SED-ML Document. If defined,
it indicates how to display the axis itself, for features such as color and/or line thickness for the axis and
its labels. If not present, any style may be used. Note that it is possible to suppress an axis from being
displayed entirely if the corresponding Style of an Axis has a 1line with a style of “none”.

reverse

The reverse attribute indicates whether the axis should be plotted from the minimum value to the
maximum value (“false”) or from the maximum value to the minimum value (“true”) (i.e. left to right
or bottom to top, depending on the axis). If not defined, either is technically possible, but should be
assumed to go from minimum to maximum.

58

SEDBase

I

AbstractCurve

xDataReference: SIdRef

tegX—Besolean { use="deprecated” }

order: non-negative integer { use="optional"}
style: SIdRef {use="optional" }

yAxis: string {use="optional", fixed ="right"|"left"}

JAY

— Curve

yDataReference: SIdRef
leg¥-Beselean { use="deprecated” }
type: CurveType

xErrorUpper: SldRef { use="optional" }
xErrorLower: SldRef { use="optional" }
yErrorUpper: SIdRef { use="optional" }
yErrorLower: SldRef { use="optional" }

— ShadedArea

yDataReferenceFrom: SIidRef
yDataReferenceTo: SldRef

Figure 2.22: The definition of the SED-ML AbstractCurve, Curve, and ShadedArea classes.

2.2.12.5 AbstractCurve

An AbstractCurve is a two-dimensional Output component representing a (processed) simulation result
(Figure 2.22). Zero or more AbstractCurve instances define a Plot2D (Figure 2.20 on page 55). The
AbstractCurve class defines the attributes common to the Curve and ShadedArea child classes. In
addition to the optional id and name attributes it inherits from SEDBase, it also defines the required
attribute xDataReference, and the optional attributes order, style, and yAxis. It is also legal but
discouraged to include an attribute logX.

The name of the AbstractCurve should be used to label the curve in the given Plot2D, or, if name is not
defined, the id may be used. If neither are present, the name or id of the referenced yDataReference
may be used in the case of a Curve or the yDataReferenceFrom and/or yDataReferenceTo in the case of
a ShadedArea. Because of the complications this can engender, it is highly recommended to define the
name of all AbstractCurve elements.

xDataReference

The xDataReference attribute must be an SIdRef to a DataGenerator in the same SED-ML Document.
The referenced DataGenerator will contain the information for the x coordinates for the data to be
plotted. If the y-coordinate data is ordinal or categorical, this attribute should point to a simple ordinal
DataGenerator.

The dimensionality of the xDataReference must match the y data, but need not be one-dimensional.
When a curve is being displayed, each one-dimensional vector within the x and y data should be displayed
on the same plot. This will effectively flatten the data to the two dimensions of the plot. When being
displayed as lines, each vector should be plotted separately, so that the plot is not overlaid with spurious
lines from the end of one vector to the beginning of the next.

59

2.2.12.6

order

The order attribute is of type non-negative integer and, if present, defines the order in which this
Curve must be displayed relative to other Curve elements in the same Plot. A Curve with a lower order
will be added earlier to the displayed curves. This means that for lines, the curve with the highest order
will be fully visible, while a Curve with a lower order may be hidden by a Curve with a higher order.
A Curve with no order may be displayed in front or behind any other Curve. For adjacent bars, the bar
with the lower order is presented to the left of any bar with a higher order. For stacked bars, the bar
with the lower order is presented underneath any bar with a higher order. As with lines, any bar with
no order defined may be placed in any position relative to the other bars in the Curve.

style

The style attribute is of type SIdRef and, if present, must reference a Style in the same SED-ML
Document. It can be used to indicate styling information for the line, marker, and/or fill for this Curve
or ShadedArea. If not present, any style may be used.

yAXis

The yAxis attribute is of type string and must be defined if the parent Plot defines both a yAxis and
a rightYAxis. If it has the value of “left”, it means that the data is to be displayed corresponding to
the yAxis of the parent Plot, and if it has the value of “right”, it means that the data is to be displayed
corresponding to the rightYAxis of the parent Plot. If the parent Plot has no defined rightYAxis, this
attribute must not be defined.

logX (deprecated)

The logX attribute, of type Boolean, was used in previous versions of SED-ML to indicate whether the
x axis of the Plot should be linear or logl0. This allowed mutliple Curve objects in the same Plot to
contradict each other, and has therefore been moved to Axis. The logX attribute on Curve has therefore
been deprecated, and will always be ignored.

Curve

A Curve is a two-dimensional Output component representing a (processed) simulation result (Figure 2.20
on page 55). Zero or more Curve instances define a Plot2D (Figure 2.20 on page 55). In addition to
the attributes it inherits from AbstractCurve (and SEDBase), it also defines the required attribute
yDataReference of type SIdRef. It also defines the optional attribute type of type CurveType, and the
optional attributes xErrorUpper, xErrorLower, yErrorUpper, and yErrorLower, all of type SIdRef.

yDataReference

Like the xDataReference, the yDataReference must be the SId of a DataGenerator in the same SED-ML
Document. The referenced DataGenerator will contain the information for the y coordinates for the data
to be plotted. The dimensions of the y data should match the x data. If the y data is multi-dimensional
(such as time course data over several stochastic replicates), one dimension should match the x data
(time, in our example), and the other dimension should simply be replicated as separate curves on the
same plot (with the same style and label).

type

The optional type attribute is of type CurveType, and determines the kind of curve being displayed.
The possible values are:

e points: The curve is plotted as points, with the y values defined via the yDataGenerator. The x
values of the points are plotted at the xDataGenerator position. Depending on the style, markers
and/or a line are plotted. To display only a set of markers the Line from its Style is set to have a
type of “none”. Similarly, to display a line only with no markers the Marker from its Style is set
to have a type of “none”. (If both are set to “none”, the curve will not be displayed at all!) The
Fill of a Style has no meaning and, if present, will be ignored.

e bar: The curve is plotted as bars with the height of the bars defined via the yDataGenerator
values. The middle of the bars are plotted at the xDataGenerator position. The style of the bars

60

2.2.12.7

22.12.8

is defined via the style, with the fill color defined in the Fill and the bar edge style in the Line.
The Marker of a Style has no meaning and, if present, will be ignored.

e barStacked: The curve is plotted as with bar, but stacked instead of adjacent.

e horizontalBar: The curve is plotted as a bar plot, but the y axis is vertical and the x axis is
horizontal.

e horizontalBarStacked: The curve is plotted as a stacked bar plot, but the y axis is vertical and
the x axis is horizontal.

xErrorUpper, xErrorLower, yErrorUpper, and yErrorLower

The optional attributes xErrorUpper, xErrorLower, yErrorUpper, and yErrorLower may be declared
to define the error in the data present in the Curve. Each attribute must, if defined, point to a Data-
Generator in the same SED-ML Document. The xErrorUpper and xErrorLower must have the same
dimensionality as the xDataReference, and the yErrorUpper and yErrorLower must have the same di-
mensionality as the yDataReference. Each set of data represents the error in that dimension, in distance
from the given data point. The xErrorUpper refers to the error in the positive direction, and xErrorLower
refers to the error in the negative direction. To set symmetrical errors xErrorUpper and xErrorLower
should point to the same DataGenerator. The same is true for yErrorUpper and yErrorLower.

ShadedArea

A ShadedArea is an AbstractCurve that defines an area instead of a series of points. In addition to what
is inherited from AbstractCurve, a ShadedArea defines the required attributes yDataReferenceFrom
and yDataReferenceTo, both of which must be an SIdRef for a DataGenerator in the same SED-ML
Document. The area between these two sets of points is then filled for display. If the style is defined,
the Fill of that Style is used to color the fill. The Marker and Line of a Style has no meaning for a
ShadedArea and, if present, will be ignored.

yDataReferenceFrom and yDataReferenceTo

The attributes yDataReferenceFrom and yDataReferenceTo are both of type SIdRef, and must reference
data of the same dimensionality. The values of the two attributes may be swapped, with the only effect
being the direction of the shading between them, if two fill colors are used.

Surface

A Surface is a parallel class to AbstractCurve that defines a three-dimensional surface instead of a two-
dimensional curve (Figure 2.23 on the next page). In addition to the optional id and name attributes
it inherits from SEDBase, it also defines the required attributes xDataReference, yDataReference, and
zDataReference, all of type SIdRef. It also defines the optional attributes style of type SIdRef, and
type, of type SurfaceType.

The name of the Surface should be used to label the surface in the given Plot3D, or, if name is not defined,
the id may be used. If neither are present, the name or id of the referenced zDataReference may be
used. In general, it is highly recommended to define the name of all Surface elements.

61

N
SEDBase \

I

Surface

xDataReference: SldRef
yDataReference: SldRef
zDataReference: SIdRef

tegp—Beotean { use="deprecated” }
teg¥-Beeotean { use="deprecated” }

tegZ—Boelean { use="deprecated” }
style: SIdRef {use="optional” }

type: SurfaceType
order: non-negative integer { use="optional" }

Figure 2.23: The definition of the SED-ML Surface class.

xDataReference, yDataReference, and zDataReference

The three data reference attributes must point to DataGenerator elements in the same SED-ML Docu-
ment, which define the surface to be plotted. All three attributes are required. If the zDataReference
is intended to be plotted by index, the xDataReference and yDataReference attributes should point to
DataGenerator elements that generate those indices.

As with an AbstractCurve, the dimensionality of the attributes xDataReference, yDataReference and
zDataReference must match each other, but need not be one-dimensional. When a surface is being
displayed, each one-dimensional vector within the x, y, and z data should be displayed on the same plot.
This will effectively flatten the data to the three dimensions of the plot. When the data is being plotted
as lines, Each vector should be plotted with its own line, so that the plot is not overlaid with spurious
lines from the end of one vector to the beginning of the next.

style

The style attribute, if defined, must contain the SId of a Style object in the same SED-ML Document.
This Style determines how any lines, markers, or fills on that surface should be displayed, if present for
that type of Surface.

type

The type attribute, if present, determines the type of surface and how it should be displayed. The
options are:

e parametricCurve: Each successive data point is plotted in order, potentially joined by a line.
If the z data is 2-dimensional instead of a vector, the last point of the first vector should not be
connected to the first point of the next. The line and marker styles can be set from the style
(including removing them if the type of either is set to “none”).

e surfaceMesh: The data are plotted as a wireframe, with adjacent-in-space data points connected
with lines. The line style can be set from the style.

e surfaceContour: The data is plotted as a continuous surface. The fill color can be set from the
style, as can the lines and/or markers, if displaying those elements are desired.

e contour: The 3D data are plotted as a 2D surface, with contour lines (similar to elevation plots).
The line style can be set from the style.

e heatMap: The 3D data are plotted as a 2D surface, with color representing the values. The colors

62

2.2.13

2.2.13.1

can be set from the fill of the style.

e bar: The data is plotted as a 3D bar plot.

logX, 1ogY, 1logZ (deprecated)

The logX, logY and logZ attributes, of type Boolean, were used in previous versions of SED-ML to
indicate whether the respective axis of the Plot should be linear or logl10. This allowed multiple objects
in the same Plot to contradict each other, and has therefore been moved to Axis. The logX, logY and
logZ attributes on Surface have therefore been deprecated, and will always be ignored.

N
SEDBase \

JAN

N
Output N
Report
T listOfDataSets 0,1 ListOfDataSets
dataSet 0..*
DataSet

label: string
dataReference: SIdRef

Figure 2.24: The definition of the SED-ML Report, ListOfDataSets, and DataSet classes.

Report

The Report class defines a data map consisting of several single instances of the DataSet in the child
listOfDataSets (Figure 2.24). Its output returns the simulation result processed via DataGenerators in
actual numbers. The elements of the report are defined by creating an instance of the DataSet for each
element of the report and are identified by the label of the DataSet.

The simulation result itself, i.e. concrete result numbers, are not stored in SED-ML, but the directive
how to calculate them from the output of the simulator is provided through the dataGenerator. The
encoding of simulation results is not part of SED-ML Level 1 Version 4, but it is recommended that
2D output be exported as CSV files, using the label as column headers, and that output with more
dimensions be exported as HDF5, again using the label to uniquely identify the data sets.

DataSet

The DataSet class holds definitions of data to be used in the Report class (Figure 2.24). DataSets are
labeled references to instances of the DataGenerator class. It defines the required attributes label of
type string and dataReference of type SIdRef.

Each data set in a Report must have an unambiguous label. A label is a human readable descriptor of a
data set for use in a Report. In general the Report is a map between labels and data from DataGenerator
instances, but can be interpreted as a data table for certain tasks. For example, in the special case of
time series results, the report could be a tabular data set with the label being the column heading and
the time series results being the columns.

63

2.2.14

2.2.15

label

The label attribute is of type string defines a unique label for every DataSet in a given Report.

dataReference

The dataReference attribute is of type SIdRef, and must be the ID of a DataGenerator element in
the same SED-ML Document. The data produced by that particular DataGenerator fills the according
dataSet in the report.

Listing 2.59 shows the use of the dataSet element. The example shows the definition of a dataSet. The
referenced dataGenerator dgl must be defined in the 1istOfDataGenerators.

1 <listOfDataSets>
2 <dataSet id="d1" name="vl over time" dataReference="dgl" label="_1">
3 </listOfDataSets>

Listing 2.59: The SED-ML dataSet element, defining a data set containing the result of the referenced
task

ParameterEstimationReport

A ParameterEstimationReport class is used to create a default report from a ParameterEstimationTask.
It has a single required attribute taskReference of type SIdRef that points to that task.

Output

T

ParameterEstimationReport

taskReference: SldRef

Figure 2.25: The definition of the SED-ML ParameterEstimationReport class.

The report should include the relevant information collected during the parameter estimation, but the
specifics may vary from tool to tool depending on the particular method used. At the very least, the
optimal AdjustableParameter values should be reported, along with any information that would let the
user determine the confidence in those estimates.

It is possible to reproduce and/or have more control over the contents of a Report that covers the
contents of a ParameterEstimationTask by creating DataGenerator elements that use Variable objects
using a dimensionTerm and referencing particular elements of a ParameterEstimationTask such as the
residuals of the Objective, or the overall x? value of the task. But most of these values should be
produced by default in a ParameterEstimationReport.

Figure

The Figure class provides a mechanism to arrange and display several Plot elements together. It inherits
the attributes and children of Ouiput, and additionally defines two required attributes numRows and
numCols, both of type positive integer, and can additionally contain any number of SubPlot children
through a ListOfSubPlots.

64

2.2.15.1

SEDBase

Output ﬁ

Figure

numRows: positive integer
numCols: positive integer

TllstOfSubPIots 0,1 ListOfSubPlots

bPlot 0..*
TL SubPlot

plot: SIdRef

row: positive integer

col: positive integer

rowSpan: positive integer {use="optional" }
colSpan: positive integer {use="optional" }

Figure 2.26: The definition of the SED-ML Figure, ListOfSubPlots, and SubPlot classes.

numRows and numCols

The numRows and numCols attributes define the number of rows and columns, respectively, to be contained
in the figure. The relative size of each row and columns is not defined, but should be large enough to
contain the Plot elements to be displayed in them.

1istOfSubPlots

The 1istO0fSubPlots child of a Figure contains all the Plot elements to display. Each SubPlot declares
itself where it is to be displayed in the Figure.

SubPlot

The SubPlot class inherits from SEDBase and additionally defines three required attributes (plot, of
type SIdRef, and row and col, both of type positive integer), and two optional attributes (rowSpan
and colSpan, both of type positive integer). Each SubPlot defines where in the Figure the referenced
Plot should be displayed.

plot

The plot attribute must be an SIdRef to a Plot. The referenced Plot will be displayed in the Figure. It
is not necessary for each plot to be unique, if the same Plot should be displayed multiple times.

row and col

The row and col attributes define the row and column, respectively, within the Figure where the Plot
is to be displayed. This must not conflict with any other SubPlot in the same Figure, and may not
be greater than the Figure’s numRows or numCols attributes, respectively. Rows and columns are both
numbered starting with “1”, rows are ordered top to bottom, and columns are ordered left to right, so
row=‘‘1"" col=*‘1""’ places a Plot in the upper left corner of the Figure.

rowSpan and colSpan

The optional rowSpan and colSpan attributes are used when a Plot is to be displayed in multiple rows
and/or columns in a Figure. Each attribute indicates the number of rows and/or columns the figure is
to span. The value must be a positive integer, and it must not be greater than the number of available
rows and/or columns in the Figure.

65

In the following example, a 3x3 Figure is defined with four subplots. The first is in the upper left corner,
the second in the top row occupying columns 2 and 3, the next a 2x2 subplot in the lower left, and the
final subplot in the right-most column, occupying rows 2 and 3.

1 <figure id="figl" name="Figure 1" numRows="3" numCols="3">

2 <listOfSubPlots>

3 <subPlot id="ax1l" plot="plot_yl" row="1" col="1" />

4 <subPlot id="ax2" plot="plot_y2" row="1" col="2" colSpan="2"/>

5 <subPlot id="ax3" plot="plot_y3" row="2" col="1" colSpan="2" rowSpan="2"/>

6 <subPlot id="ax4" plot="plot_y4" row="2" col="3" rowSpan="2"/>

7 </1listO0fSubPlots>

8 <notes><p xmlns="xhtml">Figure 1 - Example for figure with text legend and sub-plots.</p></notes>
9 </figure>

Listing 2.60: The SED-ML figure element, defining a figure with four subplots of different sizes

Figure 1
plot_y1 plot_y2
100 A 10 A
50 4 51
u h T T T u_ T T T T T T
0 5 10 0 2 4 6 8 10
plot_y3 plot_y4
100 1
3.0
0.75 1
251 0.50 1
201 0.25
15 | 0.00 |
025 1
104
H0.50 1
031 L0.75 |
0.0 1 -1.00 4
T T T T T T T T T
0 2 4 &] 10 0 5 10

Figure 2.27: The output of Listing 2.60

2.2.16 ParameterEstimationResultPlot

A ParameterEstimationResultPlot class is used to create a default plot from a ParameterEstimationTask.
It inherits from Plot, and adds a single required attribute taskReference of type SIdRef that points to
that task.

Plot

o

ParameterEstimationResultPlot

WaterfallPlot

taskReference: SIdRef

taskReference: SIdRef

Figure 2.28: The definition of the SED-ML ParameterEstimationResultPlot and WaterfallPlot classes.

The plot should display the relevant information collected during the parameter estimation, but the
specifics may vary from tool to tool depending on the particular method used. At the very least, the
optimal AdjustableParameter values should be reported, along with any information that would let the
user determine the confidence in those estimates, such as the residuals.

It is possible to reproduce and/or have more control over the contents of a Plot that covers the contents

66

2.2.17

2.2.18

of a ParameterEstimationTask by creating DataGenerator elements that use Variable objects using a
dimensionTerm and referencing particular elements of a ParameterEstimationTask such as the residuals
of the Objective, or the overall x? value of the task. This is the only way to get direct control over the
Style of anything displayed in a ParameterEstimationResultPlot. But the data itself should be displayed
in some form by default in a ParameterEstimationReport.

WaterfallPlot

The WaterfallPlot class is used to create a default plot of a particular style from a ParameterEstima-
tionTask. It inherits from Plot, and adds a single required attribute taskReference of type SIdRef that
points to that task.

Like a ParameterEstimationResultPlot, a WaterfallPlot displays a range of results and data from a
ParameterEstimationTask that might not otherwise be easily accessible. Different tools and different
experiments may result in different types and styles of waterfall plots. For an overview of the sort of
data present in one, see Gillespie, 2012 [12].

Style

The Style class (Figure 2.29) defines a graphical style for use in Figure or Plot elements.

SEDBase

)

Style

id: SId { use="required" }
baseStyle: SIdRef { use="optional" }

Line —

type: LineType { use="optional" }
color: SedColor { use="optional" }
thickness: double { use="optional" }

marker 0,1

Marker —

type: MarkerType { use="optional" }
size: double { use="optional” }

fill: SedColor { use="optional" }
lineColor: SedColor { use="optional" }
lineThickness: double { use="optional" }

fill 0,1

Fill —

color: SedColor

Figure 2.29: The SED-ML Style class

The Style class inherits the attributes and children from SEDBase, extending the id attribute to be
required, adding an optional baseStyle of type SIdRef, and allowing up to three optional chidren of
type Line, Marker, and Fill. Collectively, these elements describe a visual style that can be applied to
an AbstractCurve or Surface.

67

2.2.18.1

2.2.18.2

baseStyle

The optional baseStyle attribute of data type SIdRef is used to reference a different Style in the same
SED-ML Document. If present, any defined aspect of the referenced Style is assumed to apply to the
current Style, unless superseded by an element of the current Style. For example, if one Style “stylel”
defines a black line with a blue marker, and a second Style “style2” has a baseStyle of “stylel” and
defines a red line, applying a “style2” would result in a red line with a blue marker.

Line

The Line class inherits the attributes and children of SEDBase, and adds three optional attributes: type
of type LineType, color of type SedColor, and thickness of type double. If any of these attributes are
defined, lines presented in the parent Style should have that type, color, and/or thickness. If any of the
attributes is not defined, it can be defined by the Style referenced in the baseStyle, or is undefined and
can be anything.

type
The type attribute defines how lines are to be drawn. The options are:
e none: The line is not to be displayed at all.
e solid: The line is to be displayed as a continuous line.
e dash: The line is to be displayed as a series of short lines.
e dot: The line is to be displayed as a series of dots.
e dashDot: The line is to be displayed as a series of single lines and single dot combinations.

e dashDotDot: The line is to be displayed as a series of single lines and two dot combinations.

color

The color attribute defines what color the line should be. See the SedColor for a description of how
colors are defined in SED-ML.

thickness

The thickness attribute defines the thickness of the line, in pixels (or the equivalent in the application’s
display environment).

Marker

The Marker class inherits the attributes and children of SEDBase, and adds five optional attributes:
type of type MarkerType, size of type double, £il1 of type SedColor, 1lineColor of type SedColor, and
lineThickness of type double. If any of these attributes are defined, markers presented in the parent
Style should have that attribute. If any of the attributes is not defined, it can be defined by the Style
referenced in the baseStyle, or is undefined and can be anything.

type
The type attribute defines how markers are to be drawn. The options are:
e none: The marker is not to be displayed at all.
e square: The marker is to be displayed as a square.
e circle: The marker is to be displayed as a circle.
e diamond: The marker is to be displayed as a diamond.
e xCross: The marker is to be displayed as an ‘x’.
e plus: The marker is to be displayed as a plus.

e star: The marker is to be displayed as a star.

68

2.2.18.3

e triangleUp: The marker is to be displayed as an upwards-pointing triangle.
e triangleDown: The marker is to be displayed as a downwards-pointing triangle.
e triangleLeft: The marker is to be displayed as a left-pointing triangle.
e triangleRight: The marker is to be displayed as a right-pointing triangle.
e hDash: The marker is to be displayed as a horizontal dash.
e vDash: The marker is to be displayed as a vertical dash.
size

The size attribute defines what size, in pixels, the marker should be (or the equivalent in the application’s
display environment.

fill

The fill attribute defines what color the interior of the marker should be. See the SedColor for a
description of how colors are defined in SED-ML.

lineColor

The lineColor attribute defines what color the border of the marker should be. See the SedColor for a
description of how colors are defined in SED-ML.

lineThickness

The thickness attribute defines the thickness of the marker’s border, in pixels (or the equivalent in the
application’s display environment).

Fill

The Fill class inherits the attributes and children of SEDBase, and adds the optional attributes color
of type SedColor. When defined, fills presented in the parent Style should have that color. If any of the
attributes is not defined, it can be defined by the Style referenced in the baseStyle, or is undefined and
can be anything.

color

The color attribute defines what color the fill should be. See the SedColor for a description of how
colors are defined in SED-ML.

69

3.1

3.141

3.1.2

3.1.2.1

3. Concepts used in SED-ML

MathML

SED-ML encodes mathematical expressions using a subset of MathML 2.0 [5]. MathML is an interna-
tional standard for encoding mathematical expressions using XML. It is also used as a representation

of mathematical expressions in other formats, such as SBML and CellML, two of the model languages
supported by SED-ML.

SED-ML files can use mathematical expressions to encode for example pre-processing steps applied to
the computational model (ComputeChange), or post processing steps applied to the raw simulation data
before output (DataGenerator).

SED-ML classes reference MathML expressions via the element Math of data type MathML.

MathML elements

The allowed MathML in SED-ML is restricted to the following subset:

e token: cn, ci, csymbol, sep
e general: apply, piecewise, piece, otherwise
e relational operators: eq, neq, gt, 1t, geq, leq

e arithmetic operators: plus, minus, times, divide, power, root, abs, exp, 1n, log, floor, ceiling,
factorial, quotient, max, min, rem

e logical operators: and, or, Xor, not, implies
e qualifiers: degree, logbase

e trigonometric operators: sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech, csch, coth, arcsin,
arccos, arctan, arcsec, arccsc, arccot, arcsinh, arccosh, arctanh, arcsech, arccsch, arccoth

e constants: true, false, notanumber, pi, infinity, exponentiale

o MathML annotations: semantics, annotation, annotation-xml

MathML symbols

All the operations listed above describe functions of scalar-valued SED variables, or element-wise com-
putations of matrix-valued SED variables. Matrix-valued SED variables can arise in multiple ways. For
example, a variable for a basic task of a non-spatial UniformTimeCourse would be a vector with length
equal to the number of steps of the time course plus one. A Variable for a RepeatedTask of a non-spatial
time course could be represented a matrix with dimensions for the iterations of the repeated tasks, its
subtasks, and the steps of the nested basic task. MathML functions for matrices should be evaluated
on an element-wise basis. For example, if M and N were two 2D matrix-valued SED variables, M + 3
would add three to every element of M, R = M + N would only be valid if M and N have the same
dimensions, and R; ; would be equal to M; ; + N; ;. If the lengths of the dimensions are not equal (i.e.
if M; ; exists but INV; ; does not), the missing value should be assumed to be NaN (not a number). At
this point, SED-ML does not define an algebra for matrix computations.

MathML csymbols for dimensional input

While the new dimensionTerm attribute of the Variable class provides functionality to reduce the dimen-
sionality of matrices, previous version of SED-ML defined the MathML functions min, max, sum, and

70

product, each of which would reduce any n-dimensional vector to a single scalar value. It is recommended
that users switch to using Variable elements with a dimensionTerm for their increased functionality, but
the old functions are still defined here for backwards compatibility. The only allowed symbols to be used
in aggregate functions are the identifiers of Variables defined in the listOfVariables of a DataGenera-
tor. These Variables represent the data collected from the simulation experiment in the associated Task.
They always return scalar values, regardless of the dimensionality of the Variable, and ignore any NaN
values the vector or matrix might have.

min

The min of a variable represents the smallest value the simulation experiment for that variable (List-
ing 3.1).

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#min">
3 min

4 </csymbol>

5 <ci> variableId </ci>

6 </apply>

Listing 3.1: Ezample for the use of the MathML min function.

max

The max of a variable represents the largest value the simulation experiment for that variable (Listing 3.2).

1 <apply>

2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#max">
3 max

4 </csymbol>

5 <ci> variableId </ci>

6 </apply>

Listing 3.2: Example for the use of the MathML max function.

sum

The sum of a variable represents the sum of all values of the variable returned by the simulation experiment
(Listing 3.3).

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#sum">
3 sum
4 </csymbol>
5 <ci> variableId </ci>
6 </apply>
Listing 3.3: Example for the use of the MathML sum function.
product

The product of a variable represents the multiplication of all values of the variable returned by the
simulation experiment (Listing 3.4).

1 <apply>

2 <csymbol encoding="text" definitionURL="http://sed-ml.org/#product">
3 product

4 </csymbol>

5 <ci> variableId </ci>

6 </apply>

Listing 3.4: Ezample for the use of the MathML product function.

3.1.2.2 MathML Distribution Functions

The following functions are added to MathML as csymbols to represent draws from distributions: uni-
form, normal, lognormal, poisson, and gamma:

uniform

The uniform of a variable represents a draw from a uniform distribution. It has two arguments: the
first is ‘min’ and the second is ‘max’, with ‘max’ requried to be greater than ‘min’. The draw from the
distribution must be between ‘min’ and ‘max’, and may include ‘min’, but may not include ‘max’.

71

3.1.3

<apply>
<csymbol encoding="text" definitionURL="http://sed-ml.org/functions/#uniform">

1

2

3 uniform

4 </csymbol>

5 <ci> minId </ci>

6 <ci> maxId </ci>

7 </apply>

Listing 3.5: Ezample for the use of the MathML uniform function.

normal

The normal of a variable represents a draw from a normal distribution. It has two arguments: the first

is ‘mean’, and the second is ‘stdev’, that define the mean and the standard deviation, respectively, of
the distribution.
1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/functions/#normal">
3 normal
4 </csymbol>
5 <ci> meanId </ci>
6 <ci> stdevId </ci>
7 </apply>
Listing 3.6: Example for the use of the MathML normal function.

lognormal

The lognormal of a variable represents a draw from a log-normal distribution. It has two arguments: the
first is ‘mean’, and the second is ‘stdev’, that define the mean and the standard deviation, respectively,

of the distribution.

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/functions/#lognormal">
3 lognormal
4 </csymbol>
5 <ci> meanId </ci>
6 <ci> stdevId </ci>
7 </apply>
Listing 3.7: Ezample for the use of the MathML lognormal function.

gamma

The gamma of a variable represents a draw from a gamma distribution. It has two arguments: the first
is ‘shape’, and the second is ‘scale’, that define the shape and scale, respectively, of the distribution.

<apply>

1
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/functions/#gamma">
3 gamma
4 </csymbol>
5 <ci> shapeId </ci>
6 <ci> scaleld </ci>
7 </apply>
Listing 3.8: Ezample for the use of the MathML gamma function.
poisson

The poisson of a variable represents a discrete value drawn from a poisson distribution. It has a single
argument: ‘rate’, the expected rate of occurrences for the distribution.

1 <apply>
2 <csymbol encoding="text" definitionURL="http://sed-ml.org/functions/#poisson">
3 poisson
4 </csymbol>
5 <ci> ratelId </ci>
6 </apply>
Listing 3.9: Ezample for the use of the MathML poisson function.
NA values

NA (not available) values can occur within a simulation experiment. Examples are missing values in a
DataSource or simulation results with NA values. All math operations encoded in MathML in SED-ML

are well defined on NA values.

NA values in a Curve or Surface should be ignored during plotting.

72

3.2

3.21

3.2.2

3.23

URI scheme

URIs are used in SED-ML as a mechanism

e to reference models (3.2.1 Model references)
e to reference data files (3.2.2 Data references)
e to enable addressing implicit model variables (3.2.3 Symbols)

e to annotate SED-ML elements (3.2.4 Annotation Scheme)

Model references

The two principle recommended methods for referencing data is by URL or by relative pathname. Any
URL should preferably point to a public, consistent location that provides the model description file.
References to curated, open model bases are recommended, such as the BioModels Database. Relative
pathnames are useful both when working with a collection or folder of related files, or when the files are
collected into a COMBINE archive.

For additional information see the source attribute on Model.

An alternative means to obtain a model may be to provide a single resource containing necessary models
and a SED-ML file. Although a specification of such a resource is beyond the scope of this document,
the recommended means is the COMBINE archive.

Data references

The two principle recommended methods for referencing data is by URL or by relative pathname. Both
of these methods will work if the file or files are transferred to a new location, or to a COMBINE
archive. Absolute pathnames will work when used in their original locations, but not when moved to a
new location or bundled into an archive, and are therefore not recommended.

For additional information see the source attribute on DataDescription.

Symbols

Some variables used in a simulation experiment are not explicitly defined in the model, but may be
implicitly contained in it. For example, to plot a variable’s behaviour over time, that variable is defined
in an SBML model, whereas time is not explicitly defined.

SED-ML can refer to such implicit variables via the Symbol concept. Such implicit variables are defined
using KiSAO through the kisaoID format to reference the implied variable.

For example, to refer in a SED-ML file to the definition of time, the string KISAO: 0000832 is used. For
backwards compatibility, the string “urn:sedml:symbol:time” may be used.

With very few exceptions, symbols refer to mathematics of a model that can be read out of the model,
but cannot be set directly. You cannot use a symbol attribute to set the time of a model, for example,
nor may you set the Stoichiometry matrix nor the elasticities. The only partial exception to this is that
the amount, concentation, or particle number of a species may be set by an element using both a target
attribute to indicate the species and a symbol to indicate which form to use.

Table 3.1 lists the predefined symbols in SED-ML.

Language URN KiSAO ID Definition

SBML urn:sedml :symbol:time KISAO:0000832 Time in SBML is an intrinsic model
variable that is addressable in model
equations via a csymbol time.

Table 3.1: The single predefined symbol in SED-ML. For Level 1 Version 4, KiSAO IDs are used
instead, though ‘time’ is still allowed for backwards compatibility. The latest list of KiSAO terms is
available from https://github.com/SED-ML/KiSAO.

73

https://github.com/SED-ML/KiSAO

3.2.4

3.3

3.3.1

3.3.2

3.3.2.1

Annotation Scheme

When annotating SED-ML elements with semantic annotations, the MIRIAM URI Scheme should be
used. In addition to providing the data type (e.g., PubMed) and the particular data entry inside that
data type (e.g., 18415827), the relation of the annotation to the annotated element should be described
using the standardized biomodels.net qualifier. The list of qualifiers, as well as further information about
their usage, is available from http://www.biomodels.net/qualifiers/.

URN scheme

URNSs are a subset of URIs, and are used in SED-ML as a mechanism

e to specify the language of the referenced model (3.3.1 Language references)

e to specify the format of the referenced dataset (3.3.2 Data format references)

Language references

The evaluation of a SED-ML document is required in order for software to decide whether or not it can be
used in a particular simulation environment. One crucial criterion is the particular model representation
language used to encode the model. A simulation software usually only supports a small subset of the
representation formats available to model biological systems computationally.

To help software decide whether or not it supports a SED-ML description file, the information on
the model encoding for each referenced model can be provided through the language attribute, as the
description of a language name and version through an unrestricted String is error-prone. A prerequisite
for a language to be fully supported by SED-ML is that a formalised language definition, e.g., an XML
Schema, is provided online. SED-ML also defines a set of standard URIs to refer to particular language
definitions.

To specify the language a model is encoded in, a set of pre-defined SED-ML URNSs can be used (Table 3.2
on the next page). The structure of SED-ML language URNs is urn:sedml:language:name.version.
One can be as specific as defining a model being in a particular version of a language, e.g., SBML Level
3 Version 1 as urn:sedml:language:sbml.level-3.version-1.

For additional information see the language attribute on Model.

Data format references

To help software decide whether or not it supports a SED-ML file, the information on the dataDescription
encoding for each referenced dataDescription can be provided through the format attribute.

To specify the format of a dataDescription, a set of pre-defined SED-ML URNSs can be used (Table 3.3
on the following page). The structure of SED-ML format URNS is urn:sedml : format : name. version.

If it is not explicitly defined the default value for format is urn:sedml: format:numl, referring to NuML
representation of the data. However, the use of the format attribute is strongly encouraged.

For additional information see the format attribute on DataDescription and the description of individual
formats and their use in SED-ML below.

NuML (Numerical Markup Language)

NuML is an exchange format for numerical data. Data in the NuML format (urn:sedml:format:numl)
is defined via resultComponents with a single dataset corresponding to a single resultComponent. In
the case that a NuML file consists of multiple resultComponents the first resultComponent contains
the data used in the DataDescription. There is currently no mechanism in SED-ML to reference the
additional resultComponents.

If a dimensionDescription is set on the DataDescription, than this dimensionDescription must be
identical to the dimensionDescription of the NuML file.

74

http://www.biomodels.net/qualifiers/

Language URN

BNGL (generic) urn:sedml : language:bngl
CellML (generic) urn:sedml:language:cellml
CellML 1.0 urn:sedml:language:cellml.1.0
CellML 1.1 urn:sedml:language:cellml.1_1
CellML 2.0 urn:sedml:language:cellml.2_0
GINML (generic) urn:sedml:language:ginml
HOC (generic) urn:sedml:language:hoc

Kappa (generic) urn:sedml : language :kappa
LEMS (generic) urn:sedml:language:lems
MorpheusML (generic) urn:sedml:language:morpheusml
NeuroML (generic) urn:sedml: language : neuroml

NeuroML Version 1.8.1 Level 1 urn:sedml:language:neuroml.version-1_8_1.level-1
NeuroML Version 1.8.1 Level 2 urn:sedml:language:neuroml.version-1.8_1.level-2
NeuroML Version 1.8.1 Level 3 urn:sedml:language:neuroml.version-1.8_1.level-3

NeuroML Version 2.1 urn:sedml:language:neuroml.version-2_1
PharmML (generic) urn:sedml: language : pharmml

SBML (generic) urn:sedml : language: shml

SBML Level 1 Version 1 urn:sedml:language:sbml.level-1.version-1
SBML Level 1 Version 2 urn:sedml:language:sbml.level-1.version-2
SBML Level 2 Version 1 urn:sedml:language:sbml.level-2.version-1
SBML Level 2 Version 2 urn:sedml:language:sbml.level-2.version-2
SBML Level 2 Version 3 urn:sedml:language:sbml.level-2.version-3
SBML Level 2 Version 4 urn:sedml:language:sbml.level-2.version-4
SBML Level 2 Version 5 urn:sedml:language:sbml.level-2.version-5
SBML Level 3 Version 1 urn:sedml:language:sbml.level-3.version-1
SBML Level 3 Version 2 urn:sedml:language:sbml.level-3.version-2
Smoldyn (generic) urn:sedml: language: smoldyn

VCML (generic) urn:sedml : language: veml

ZGINML (generic) urn:sedml : language: zginml

Table 3.2: Predefined model language URNs. The latest list of language URNs is available from
https://sed-ml.org/urns.html.

Data Format URN

NuML (generic) urn:sedml: format :numl

NuML Level 1 Version 1 urn:sedml: format:numl.level-1.version-1
CSvV urn:sedml: format:csv

TSV urn:sedml: format:tsv

HDF5 urn:sedml: format:hdf5

Table 3.3: Predefined dataDescription format URNs. The latest list of format URNSs is available from
https://sed-ml.org/urns.html.
3.3.2.2 CSV (Comma Separated Values)

Data in the CSV format (urn:sedml:format:csv) must follow the following rules when used in combi-
nation with SED-ML:

e Each record is one line - Line separator may be LF (0x0A) or CRLF (0x0DO0A), a line separator
may also be embedded in the data (making a record more than one line but still acceptable).

e Fields are separated with commas.
e Embedded commas - Field must be delimited with double-quotes.

e Leading and trailing whitespace is ignored - Unless the field is delimited with double-quotes in that
case the whitespace is preserved.

(0]

https://sed-ml.org/urns.html
https://sed-ml.org/urns.html

3323

e Embedded double-quotes - Embedded double-quote characters must be doubled, and the field must
be delimited with double-quotes.

e Embedded line-breaks - Fields must be surounded by double-quotes.

e Always Delimiting - Fields may always be delimited with double quotes, the delimiters will be
parsed and discarded by the reading applications.

e The first record is the header record defining the unique column ids
e Lines starting with ”#” are treated as comment lines and ignored
e Empty lines are allowed and ignored

e For numerical data the ”.” decimal separator is used

e The following strings are interpreted as NaN: 77, ?#N/A” ?#N/A N/A”, "#NA”, 7-1.#IND”,
7’_1'#QNAN”’ ”_]‘Va/N'”7 77_nan77, ” 1.#IND”’ b 1.#QNAN”, 77N/A777 ” NA”, ” NULL”, ” Na‘N”7 ” nan” .

A dataset in CSV is always encoding two dimensional data.

When using data in the CSV format SED-ML, the dimensionDescription is required on the DataDe-
scription.

The dimensionDescription must consist of an outer compositeDescription with indexType="integer"
which allows to reference the rows of the CSV by index and a inner compositeDescription which allows
to reference the columns of the CSV by their column header id. Within the inner compositeDescription
exactly one atomicDescription must exist. All data in the CSV must have the same type which is defined
via the valueType on the atomicDescription.

Below an example of the required dimensionDescription for a CSV is provided. In the example the
time and S1 columns are read from the CSV file

1 # ./example.csv
2 time, S1, S2
3 0.0, 10.0, 0.0

Listing 3.10: Exzample CSV

2 <dataDescription id="datacsv" name="Example CSV dataset" source="./example.csv" format="
urn:sedml: format:csv">

3 <dimensionDescription>

4 <compositeDescription indexType="integer" name="Index">

5 <compositeDescription indexType="string" name="ColumnIds">

6 <atomicDescription valueType="double" name="Values" />

7 </compositeDescription>

8 </compositeDescription>

9 </dimensionDescription>

10 <listOfDataSources>

11 <dataSource id="dataTime">

12 <listOfSlices>

13 <slice reference="ColumnIds" value="time" />
14 </1listO0fSlices>

15 </dataSource>

16 <dataSource id="dataS1">

17 <listOfSlices>

18 <slice reference="ColumnIds" value="S1" />
19 </listO0fSlices>

20 </dataSource>

21 </listOfDataSources>
22 .
23 </dataDescription>

Listing 3.11: SED-ML dimensionDescription element for the example.csv

TSV (Tab Separated Values)

The format TSV (urn:sedml:format:tsv) is defined identical to CSV with the exceptions listed below

e Fields are separated with tabs instead of commas.

e Embedded tab - Field must be delimited with double-quotes (embedded comma field must not be
delimited with double quotes)

76

3.3.2.4 HDF5 (Hierarchical Data Format version 5)

The format HDF5 is defined at https://portal.hdfgroup.org/display/HDF5/HDF5. It supports the
storage of multidimensional data, and is therefore ideal for storing the SED-ML output of repeated
tasks; particularly nested repeated tasks.

Each dimension of SED-ML RepeatedTask output should be labeled according to the relevant id of the
SED-ML object that describes that dimension, namely:

e The id of the top-level RepeatedTask

e The id of the SubTask

e The id of any nested SubTask (for arbitrarily-deeply nested subtasks).

e The dimension of the data itself (i.e. time for a UniformTimeCourse).

e The id of the requested variable, or the infix representation of the Math from the DataGenerator.

When a Variable’s dimensionTerm is used to reduce the dimensionality of a set of data (using an appro-
priate KiSAO value and AppliedDimension children), information about the dimension reduction may
be included as annotation, i.e. one could annotate a SubTask dimension as ’averaged over the Repeat-
edTask [id]’. When a DataGenerator contains a Variable that outputs a matrix, that matrix can also
be labeled appropriately (such as with species or reaction ids).

When output from multiple tasks are combined mathematically, their dimensions must match exactly,
so the ids from either (or a combination of both) may be used. Again, annotations are recommended to
describe how the data was combined.

Each dimension may also be annotated with an ontology term such as one from the ’Semanticscience
Integrated Ontology’ (SIO, https://bioportal.bioontology.org/ontologies/SIO).

XPath

XPath is a language for finding and referencing information in an XML document [7]. Within SED-ML
Level 1 Version 4, XPath version 1 expressions can be used to identify nodes and attributes within an
XML representation of an XML-encoded model in the following ways:

e Within a Variable definition, where XPath identifies the model variable required for manipulation
in SED-ML. In this context, the XPath must always reference a single XML element, and not an
attribute nor multiple XML elements.

e Within a Change definition, where XPath is used to identify the target XML to which a change
should be applied. In this context, the XPath may point to anything in the XML as appropriate for
the Change (i.e. an attribute in a ChangeAttribute; one or more elements or attributes to remove
in a RemoveXML, etc.).

For proper application, XPath expressions should contain prefixes that allow their resolution to the
correct XML namespace within an XML document. For example, the XPath expression referring to a
species X in an SBML model:

/sbml : sbml/sbml :model/sbml:1istOfSpecies/sbml:species[@id=‘X’] ¢/ -CORRECT
is preferable to
/sbml/model/listOfSpecies/species[@id=‘X"'] X -INCORRECT

which will only be interpretable by standard XML software tools if the SBML file declares no namespaces
(and hence is invalid SBML).

Following the convention of other XPath host languages such as XPointer and XSLT, the prefixes used
within XPath expressions must be declared using namespace declarations within the SED-ML document,
and be in-scope for the relevant expression. Thus for the correct example above, there must also be an
ancestor element of the node containing the ssion that has an attribute like:

xmlns:sbml=‘http://www.sbml.org/sbml/level3/versionl/core’

7

https://portal.hdfgroup.org/display/HDF5/HDF5
https://bioportal.bioontology.org/ontologies/SIO

3.5

3.6

3.7

3.8

(a different namespace URI may be used; the key point is that the prefix ‘sbml’ must match that used
in the XPath expression).

NuML

The Numerical Markup Language (NuML) aims to standardize the exchange and archiving of numerical
results. Additional information including the NuML specification is available from https://github.
com/NuML/NuML.

NuML constructs are used in SED-ML for referencing external data sets in the DataDescription class.
NuML is used to define the DimensionDescription of external datasets in the DataDescription. In addi-
tion, NuMLSIds are used for retrieving subsets of data via either the indexSet element in the DataSource
or within the Slice class.

KiSAO

The Kinetic Simulation Algorithm Ontology (KiSAO [8]) is used in SED-ML to specify simulation algo-
rithms and algorithmParameters. KiSAO is a community-driven approach of classifying and structuring
simulation approaches by model characteristics and numerical characteristics. The ontology is available
in OWL format from BioPortal at https://purl.bioontology.org/ontology/KiSAO.

Defining simulation algorithms through KISAO terms not only identifies the simulation algorithm used for
the SED-ML simulation, it also enables software to find related algorithms, if the specific implementation
is not available. For example, software could decide to use the CVODE integration library for an analysis
instead of a specific Runge Kutta 4,5 implementation.

Should a particular simulation algorithm or algorithm parameter not exist in KiSAO, please request one
via https://github.com/SED-ML/KiSAO/issues/new/choose.

COMBINE archive

A COMBINE archive [1] is a single file that supports the exchange of all the information necessary for
a modeling and simulation experiment in biology. A COMBINE archive file is a ZIP container that
includes a manifest file, listing the content of the archive, an optional metadata file adding information
about the archive and its content, and the files describing the model. The content of a COMBINE
archive consists of files encoded in COMBINE standards whenever possible, but may include additional
files defined by an Internet Media Type. Several tools that support the COMBINE archive are available,
either as independent libraries or embedded in modeling software.

The COMBINE archive is described at https://co.mbine.org/documents/archive and in [1].

COMBINE archives are the recommended means for distributing simulation experiment descriptions in
SED-ML, the respective data and model files, and the Outputs of the simulation experiment (figures and
reports). All SED-ML specification examples in Appendix A are available as COMBINE archive from
https://sed-ml.org.

SED-ML resources

Information on SED-ML can be found on https://sed-ml.org. The SED-ML XML Schema, the UML
schema, SED-ML examples, and additional information is available from https://github.com/sed-ml.

78

https://github.com/NuML/NuML
https://github.com/NuML/NuML
https://purl.bioontology.org/ontology/KiSAO
https://github.com/SED-ML/KiSAO/issues/new/choose
https://co.mbine.org/documents/archive
https://sed-ml.org
https://sed-ml.org
https://github.com/sed-ml

4. Acknowledgements

The SED-ML specification is developed with the input of many people. The following individuals have
contributed to the SED-ML specifications.

Richard Adams (Editor, 2011-2012)

Frank Bergmann (Editor, 2011-2014, 2020-2022)
Jonathan Cooper (Editor, 2012-2015)

Alan Garny (Editor, 2018-2020)

Tom4s Helikar (Editor, 2021-2023)

Jonathan Karr (Editor, 2021-2023)

Matthias Konig (Editor, 2017-2019, 2020-2022)

David Nickerson (Editor, 2011-2013, 2015-2017, 2019-2021)
Nicolas Le Novere (editorial advisor, 2011-2012, 2013)
Brett Olivier (Editor, 2015-2017)

Andrew Miller (Editor, 2011-2012)

Ton Moraru (Editor, 2014-2016)

Sven Sahle (Editor, 2014-2016)

Herbert Sauro (Editor, 2018-2020)

Lucian Smith (Editor, 2016-2018)

Dagmar Waltemath (Editor, 2011-2014, 2017-2019)

The most recent funding for this effort includes:

National Institute for Biomedical Imaging and Bioengineering award P41GM109824. (LS, HS, DN,
JK)

National Institute of General Medical Sciences award R01GM123032. (LS, HS)
National Science Foundation award 1933453 (LS, HS)
National Institute of General Medical Sciences, grant R35GM119771 (JK)

Federal Ministry of Education and Research (BMBF, Germany) within the research network de.NBI
(grant number 031L0104A) (FB)

National Institute of Health grant number R35GM119770 (TH)

The Federal Ministry of Education and Research (BMBF, Germany) within the research network
Systems Medicine of the Liver (grant number 031L0054) and by the German Research Foundation
(DFG) within the Research Unit Program FOR 5151 QuaLiPerF by grant number 436883643.
(MK)

In addition, we thank the many members of the SED-ML coummunity who have contributed to the
development of SED-ML.

79

A1

A. Examples

This appendix presents several SED-ML examples. Complete versions of these and additional examples
are available as Combine archives at https://sed-ml.org/. These examples illustrate the main features
of SED-ML. Please note, these examples do not demonstrate the full capabilities of SED-ML. The
specifications of SED-ML (Chapter 2) provide a more comprehensive view of the simulation experiments
that can be captured with SED-ML.

The examples presented here involved models encoded in CellML and SBML. Please note, SED-ML can
be used with additional model languages. See Section 3.3.1 for more information about using SED-ML
with additional model languages. Example SED-ML files for additional model languages are available at
https://run.biosimulations.org/.

Example simulation experiment (L1V3 repressilator.omex)

This example lists the SED-ML for the example in the introduction (Section 1.2). It illustrates the use
of a dimensionTerm to calculate the maximum value of a vector with the KiSAO term for 'maximum’
(“KISA0:0000828”) as the term. This document can be found at https://sed-ml.org/examples/L1V4/
L1V4_repressilator/repressilator.xml, and an OMEX version at https://sed-ml.org/examples/
L1V4/L1V4_repressilator.omex.

1 ?xml version="1.0" encoding="UTF-8"7>

2 <!-- Created by phraSED-ML version v1.0.7 with 1ibSBML version 5.15.0. -->

3 <sedML xmlns="http://sed-ml.org/sed-ml/levell/versiond4" level="1" version="4">

4 <listOfSimulations>

5 <uniformTimeCourse id="siml" initialTime="0" outputStartTime="0" outputEndTime="1000" numberOfPoints=
"1000">

6 <algorithm kisaoID="KISAO:0000019"/>
7 </uniformTimeCourse>

8 </listOfSimulations>
9

<listOfModels>
10 <model id="modell" language="urn:sedml:language:sbml.level-3.version-1" source="https://www.ebi.ac.uk
/biomodels/model/download/BIOMDOOO0OOOO127?filename=BIOMDOOOOOOOOLI2 url.xml"/>

11 <model id="model2" language="urn:sedml:language:sbml.level-3.version-1" source="#modell">

12 <listOfChanges>

13 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="ps_0']/
@value" newValue="1.3e-05"/>

14 <changeAttribute target="/sbml:sbml/sbml:model/sbml:1listOfParameters/sbml:parameter[@id="ps_a’]/
@value" newValue="0.013"/>

15 </listOfChanges>

16 </model>

17 </listOfModels>
18 <listOfTasks>

19 <task id="taskl" modelReference="modell" simulationReference="siml"/>

20 <task id="task2" modelReference="model2" simulationReference="siml"/>

21 </1listO0fTasks>

22 <listOfDataGenerators>

23 <!-- timecourse -->

24 <dataGenerator id="dg_0_0_0" name="taskl.time">

25 <listOfVariables>

26 <variable id="taskl_____ time" symbol="urn:sedml:symbol:time" taskReference="taskl"/>

27 </listOfVariables>

28 <math xmlns="http://www.w3.org/1998/Math/MathML">

29 <ci> taskl_____ time </ci>

30 </math>

31 </dataGenerator>

32 <dataGenerator id="dg_0_0_1" name="PX (lacI)">

33 <listOfVariables>

34 <variable id="taskl_____ PX" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PX
’]" taskReference="taskl" modelReference="modell"/>

35 </listOfVariables>

36 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

37 <ci> taskl_____ PX </ci>

38 </math>

39 </dataGenerator>

80

https://sed-ml.org/
https://run.biosimulations.org/
https://sed-ml.org/examples/L1V4/L1V4_repressilator/repressilator.xml
https://sed-ml.org/examples/L1V4/L1V4_repressilator/repressilator.xml
https://sed-ml.org/examples/L1V4/L1V4_repressilator.omex
https://sed-ml.org/examples/L1V4/L1V4_repressilator.omex

40
41
42

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92

93

94
95
96
97
98
99
100

102
103
104
105

106

107
108
109
110

112
113
114
115
116

118

<dataGenerator id="dg_0_1_1" name="PZ (cI)">

<listOfVariables>
<variable id="taskl_____ PZ" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PZ
’]" taskReference="taskl" modelReference="modell"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> taskl_____ PZ </ci>
</math>
</dataGenerator>
<dataGenerator id="dg_0_2_1" name="PY (tetR)">
<listOfVariables>
<variable id="taskl_____ PY" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PY
’]" taskReference="taskl" modelReference="modell"/>
</listOfVariables>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<ci> taskl_____ PY </ci>
</math>
</dataGenerator>
<!-- pre-processing -->
<dataGenerator id="dg_1_0_0" name="time">
<listOfVariables>
<variable id="task2_____ time" symbol="urn:sedml:symbol:time" taskReference="task2"/>
</listOfVariables>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> task2 time </ci>

</math>
</dataGenerator>
<dataGenerator id="dg_1_0_1" name="PX (lacI)">
<listOfVariables>
<variable id="task2_____ PX" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PX
’]" taskReference="task2" modelReference="model2"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> task2_____ PX </ci>
</math>
</dataGenerator>
<dataGenerator id="dg_1_1_1" name="PZ (cI)">
<listOfVariables>
<variable id="task2_____ PZ" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id="PZ
’]" taskReference="task2" modelReference="model2"/>
</listOfVariables>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci> task2_____ PZ </ci>
</math>
</dataGenerator>
<dataGenerator id="dg_1_2_1" name="PY (tetR)">
<listOfVariables>
<variable id="task2_____ PY" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id="PY
"]" taskReference="task2" modelReference="model2"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> task2_____ PY </ci>
</math>
</dataGenerator>
<!-- post-processing -->
<dataGenerator id="dg_2_0_0" name="PX/max(PX) (lacI normalized)">
<listOfVariables>
<variable id="taskl_____PX" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PX
’]" taskReference="taskl" modelReference="modell"/>
<variable id="taskl_____ PX_max" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id

="PX’]" taskReference="taskl" modelReference="modell" dimensionTerm="KISAO:0000828"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">

<apply>
<divide/>
<ci> taskl_____ PX </ci>
<ci> taskl_____ PX_max </ci>
</apply>
</math>
</dataGenerator>
<dataGenerator id="dg_2_0_1" name="PZ/max(PZ) (cI normalized)">
<listOfVariables>
<variable id="taskl_____ PZ" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="PZ
1" taskReference="taskl" modelReference="modell"/>
<variable id="taskl_____ PZ_max" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id

="PZ’]" taskReference="taskl" modelReference="modell" dimensionTerm="KISAO:0000828"/>
</listOfVariables>
<math xmlns="http://www.w3.0org/1998/Math/MathML">
<apply>
<divide/>
<ci> taskl PZ </ci>
<ci> taskl PZ_max </ci>
</apply>
</math>
</dataGenerator>
<dataGenerator id="dg_2_1_0" name="PY/max(PY) (tetR normalized)">
<listOfVariables>
<variable id="taskl_____ PY" target="/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id="PY
’]1" taskReference="taskl" modelReference="modell"/>

81

119

120
121
122
123
124
125
126

128
129
130
131
132
133

134

135

136
137
138
139
140

142

143
144
145
146
147

148

149

150

151

152
153

<variable id="taskl_____ PY_max" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id
=’PY’]" taskReference="taskl" modelReference="modell" dimensionTerm="KISAO:0000828"/>

</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply>
<divide/>
<ci> taskl_____ PY </ci>
<ci> taskl_____ PY_max </ci>
</apply>
</math>
</dataGenerator>
</listOfDataGenerators>
<list0fOutputs>
<plot2D id="timecourse" name="Timecourse of repressilator">
<listOfCurves>
<curve id="plot_O__plot_0_0_0__plot_0_0_1" logX="false" logY="false" xDataReference="dg_0_0_0"
yDataReference="dg_0_0_1"/>
<curve id="plot_0__plot_0_0_0__plot_0_1_1" logX="false" logY="false" xDataReference="dg_0_0_0"
yDataReference="dg_0_1_1"/>
<curve id="plot_0__plot_0_0_0__plot_0_2_1" logX="false" logY="false" xDataReference="dg_0_0_0"
yDataReference="dg_0_2_1"/>
</listO0OfCurves>
</plot2D>
<plot2D id="preprocessing" name="Timecourse after pre-processing">
<listOfCurves>
<curve id="plot_1__plot_1_0_0__plot_1_0_1" logX="false" logY="false" xDataReference="dg_1_0_0"
yDataReference="dg_1_0_1"/>
<curve id="plot_1__plot_1_0_0__plot_1_1_1" logX="false" logY="false" xDataReference="dg_1_0_0"
yDataReference="dg_1_1_1"/>
<curve id="plot_1__plot_1_0_0__plot_1_2_1" logX="false" logY="false" xDataReference="dg_1_0_0"
yDataReference="dg_1_2_1"/>
</list0fCurves>
</plot2D>
<plot2D id="postprocessing"” name="Timecourse after post-processing">
<listOfCurves>
<curve id="plot_2__plot_2_0_0__plot_2_0_1" logX="false" logY="false" xDataReference="dg_2_0_0"
yDataReference="dg_2_0_1"/>
<curve id="plot_2__plot_2_1_0__plot_2_0_0" logX="false" logY="false" xDataReference="dg_2_1_0"
yDataReference="dg_2_0_0"/>
<curve id="plot_2__plot_2_0_1__plot_2_1_0" logX="false" logY="false" xDataReference="dg_2_0_1"
yDataReference="dg_2_1_0"/>
</1listO0fCurves>
</plot2D>
</1listOfOutputs>
</sedML>

Listing A.1: SED-ML document for example simulation experiment.

82

A.2

A.2.1

Simulation experiments with dataDescriptions

The DataDescription provides means to use external datasets in simulation experiments. In this section
simulation experiments using the dataDescription are presented.

Plotting data with simulations (L1V3_plotting-data-numl.omex)

This example demonstrates the use of the DataDescription and DataSource to load external data in
SED-ML. In the example a model is simulated (using a uniformTimeCourse simulation) and the sim-
ulation results are plotted. In addition data is plotted using the dataDescription and DataSource),
extracting the S1 and time column from it and renders it. The listed example uses data encoded
in NuML as format (urn:sedml:format:numl). This document can be found at https://sed-ml.
org/examples/L1V3/L1V3_plotting-data-numl/plotting-data-numl.xml, and an OMEX version at
https://sed-ml.org/examples/L1V3/L1V3_plotting-data-numl.omex.

The corresponding example using CSV (urn:sedml: format:csv) as format to encode the data is available
as L1V3_plotting-data-csv.omex.

plotl (Time Course (Oscli))

—— S1.1(s1)
—— 52.1(52)
—— dgDataS1 (51 (data))

s2 51 (data) 0

Figure A.1: The simulation result from . o . , ,
the simulation description given in List- I[:(l)?ure A2: Simulation with tellurium

ing A.2. Simulation with SED-ML web
tools [2].

1 <?xml version="1.0" encoding="utf-8"?>
2 <sedML level="1" version="3" xmlns="http://sed-ml.org/sed-ml/levell/version3">

3 <listOfDataDescriptions>

4 <dataDescription id="Datal" name="oscillator data" source="./oscli.numl" format="
urn:sedml:format:numl">

5 <dimensionDescription>

6 <compositeDescription indexType="double" id="time" name="time" xmlns="http://www.numl.org

/numl/

7 levell/versionl">

8 <compositeDescription indexType="string" id="SpeciesIds" name="SpeciesIds">

9 <atomicDescription valueType="double" name="Concentrations"/>

10 </compositeDescription>

11 </compositeDescription>

12 </dimensionDescription>

13 <listOfDataSources>

14 <dataSource id="dataS1">

15 <listOfSlices>

16 <slice reference="SpeciesIds" value="S1"/>

17 </1listOfSlices>

18 </dataSource>

19 <dataSource id="dataTime" indexSet="time"/>

20 </listOfDataSources>

21 </dataDescription>

22 </listOfDataDescriptions>

23 <listOfSimulations>

24 <uniformTimeCourse id="siml" initialTime="0" outputStartTime="0" outputEndTime="10"
numberOfPoints="400">

25 <algorithm kisaoID="KISAO:0000019">

26 <listOfAlgorithmParameters>

27 <algorithmParameter kisaoID="KISA0:0000209" value="1E-06"/>

28 <algorithmParameter kisaoID="KISAO0:0000211" value="1E-12"/>

29 <algorithmParameter kisaoID="KISAO0:0000415" value="10000"/>

30 </listOfAlgorithmParameters>

83

https://sed-ml.org/examples/L1V3/L1V3_plotting-data-numl/plotting-data-numl.xml
https://sed-ml.org/examples/L1V3/L1V3_plotting-data-numl/plotting-data-numl.xml
https://sed-ml.org/examples/L1V3/L1V3_plotting-data-numl.omex

88

89

90
91
92
93

</algorithm>
</uniformTimeCourse>
</listOfSimulations>
<listOfModels>
<model id="modell" language="urn:sedml:language:sbml" source="./oscli.xml"/>
</listOfModels>
<1listOfTasks>
<task id="taskl" modelReference="modell" simulationReference="siml"/>
</1list0OfTasks>
<listOfDataGenerators>
<dataGenerator id="time_1" name="time">
<listOfVariables>
<variable id="time" name="time" taskReference="taskl" symbol="urn:sedml:symbol:time"/>
</listOfVariables>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci>time</ci>
</math>
</dataGenerator>
<dataGenerator id="S1_1" name="S1">
<listOfVariables>
<variable id="S1" name="S1" taskReference="taskl"
target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="S1’]"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>Sl</ci>
</math>
</dataGenerator>
<dataGenerator id="S2_1" name="S2">
<listOfVariables>
<variable id="S2" name="S2" taskReference="taskl"
target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species[@id="S2"]"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>S2</ci>
</math>
</dataGenerator>
<dataGenerator id="dgDataS1" name="S1 (data)">
<listOfVariables>
<variable id="varS1" modelReference="modell" target="#dataS1"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>varSl</ci>
</math>
</dataGenerator>
<dataGenerator id="dgDataTime" name="Time">
<listOfVariables>
<variable id="varTime" modelReference="modell" target="#dataTime"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>varTime</ci>
</math>
</dataGenerator>
</listOfDataGenerators>
<listO0fOutputs>
<plot2D id="plotl" name="Time Course (Oscli)">
<listOfCurves>
<curve id="curvel" logX="false" logY="false" xDataReference="time_1" yDataReference="S1_1
"/
<curve id="curve2" logX="false" logY="false" xDataReference="time_1" yDataReference="S2_1
"/
<curve id="curve3" logX="false" logY="false" xDataReference="dgDataTime" yDataReference="
dgDataS1"/>
</list0fCurves>
</plot2D>
</1istOfOutputs>
</sedML>

Listing A.2: SED-ML document using DataSource and DataDescription

84

A3

A.3.1

Simulation experiments with repeatedTasks

The RepeatedTask makes it possible to encode a large number of different simulation experiments. In
this section several such simulation experiments are presented.

Time course parameter scan (L1V3_repeated-scan-oscli.omex)

In this example a repeatedTask is used to run repeated uniformTimeCourse simulations with a deter-
ministic simulation algorithm. Within the repeated Task after each run the parameter value is changed,
resulting in a time course parameter scan.

NOTE: This example produces three dimensional results (time, species concentration, multiple repeats).
SED-ML Level 1 Version 4 provides ways to post-process these values with the dimensionTerm of the
Variable class, but here they are not used, meaning that every individual element in the xDataReference
is plotted vs. every individual element in the yDataReference, effectively flattening the values by
overlaying them onto the desired plot. The breaks between dimensions should be used as breaks be-
tween any connected lines, so that spurious lines from the end of one plot to the beginning of the
next are not present. This document can be found at https://sed-ml.org/examples/L1V3/L1V3_
repeated-scan-oscli/repeated-scan-oscli.xml, and an OMEX version at https://sed-ml.org/
examples/L1V3/L1V3_repeated-scan-oscli.omex.

plotl (Timecourse (Oscli) (for vO = 8, 4, 0.4))

— s11(s1)]
— s2.1(52)

3 3
: 2
! 7\ i s e A A [191
: I I
0 25 5 75 10 125 15 175 20 v v v
S1 S1 s1 s2 s2 s2 0
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
timel (time)
Figure A.3: The simulation result gained i ' ' ' '
from the simulation description given in Figure A.4: Simulation with tellurium
Listing A.3. Simulation with SED-ML [6].

web tools [2].

<?xml version="1.0" encoding="utf-8"?7>
<sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">
<listOfSimulations>
<uniformTimeCourse id="timecoursel” initialTime="0" outputStartTime="0" outputEndTime="20"
numberOfPoints="1000">
5 <algorithm kisaoID="KISAO:0000019" />
6 </uniformTimeCourse>
7 </listOfSimulations>
8
9

A~ woN e

<listOfModels>
<model id="modell" language="urn:sedml:language:sbml" source="./oscli.xml" />
10 </list0fModels>
11 <listOfTasks>

12 <task id="task0" modelReference="modell" simulationReference="timecoursel" />
13 <repeatedTask id="taskl" resetModel="true" range="current">

14 <listOfRanges>

15 <vectorRange id="current">

16 <value>8</value>

17 <value>4</value>

18 <value>0.4</value>

19 </vectorRange>

20 </listOfRanges>

21 <listOfChanges>

22 <setValue target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="JO_v®’']"
23 range="current" modelReference="modell">

24 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

25 <ci> current </ci>

26 </math>

27 </setValue>

85

https://sed-ml.org/examples/L1V3/L1V3_repeated-scan-oscli/repeated-scan-oscli.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-scan-oscli/repeated-scan-oscli.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-scan-oscli.omex
https://sed-ml.org/examples/L1V3/L1V3_repeated-scan-oscli.omex

28 </listOfChanges>

29 <listOfSubTasks>

30 <subTask order="1" task="task0" />
31 </1listO0fSubTasks>

32 </repeatedTask>

33 </1listOfTasks>
34 <listOfDataGenerators>

35 <dataGenerator id="timel" name="time">

36 <listOfVariables>

37 <variable id="time" symbol="urn:sedml:symbol:time" taskReference="taskl" />

38 </listOfVariables>

39 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

40 <ci> time </ci>

41 </math>

42 </dataGenerator>

43 <dataGenerator id="JO_vO_1" name="JO0_v0">

44 <listOfVariables>

45 <variable id="JO_vO0" name="JO_vO0" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfParameters/sbml:parameter[@id="J0_vO®’']" />

46 </listOfVariables>

47 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

48 <ci> JO_vO </ci>

19 </math>

50 </dataGenerator>

51 <dataGenerator id="S1_1" name="S1">

52 <listOfVariables>

53 <variable id="S1" name="S1" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S1’]" />

54 </listOfVariables>

55 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

56 <ci> S1 </ci>

57 </math>

58 </dataGenerator>

59 <dataGenerator id="S2_1" name="S2">

60 <listOfVariables>

61 <variable id="S2" name="S2" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S2"]" />

62 </listOfVariables>

63 <math xmlns="http://www.w3.org/1998/Math/MathML">

64 <ci> S2 </ci>

65 </math>

66 </dataGenerator>

67 </listOfDataGenerators>
68 <list0fOutputs>

69 <plot2D id="plotl" name="Timecourse (Oscli) (for vO® = 8, 4, 0.4)">

70 <listOfCurves>

71 <curve id="curvel" logX="false" logY="false" xDataReference="timel" yDataReference="S1_1" />
72 <curve id="curve2" logX="false" logY="false" xDataReference="timel" yDataReference="S2_1" />
73 </1listO0fCurves>

74 </plot2D>

75 </list0fOutputs>
76 </sedML>

Listing A.3: SED-ML document implementing the one dimensional time course parameter scan

A.3.2 Steady state parameter scan (L1V3_repeated-steady-scan-oscli.omex)

In this example a repeatedTask is used in combination with a steadyState simulation task (performing a

steady state computation). On each repeat a parameter is varied resulting in a steady state parameter

scan. This document can be found at https://sed-ml.org/examples/L1V3/L1V3_repeated-steady-scan-oscli/
repeated-steady-scan-oscli.xml, and an OMEX version at https://sed-ml.org/examples/L1V3/
L1V3_repeated-steady-scan-oscli.omex.

1 <?xml version="1.0" encoding="utf-8"?>

2 <!-- Written by libSedML v1.1.4992.38982 see http://libsedml.sf.net -->

3 <sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">
4 <listOfSimulations>

5 <steadyState id="steadyl">

6 <algorithm kisaoID="KISAO:0000282" />

7 </steadyState>

8 </listOfSimulations>

9 <listOfModels>

10 <model id="modell" language="urn:sedml:language:sbml" source="./oscli.xml" />
11 </list0fModels>

12 <listOfTasks>

13 <task id="task0" modelReference="modell" simulationReference="steadyl" />

14 <repeatedTask id="taskl" resetModel="true" range="current">

15 <listOfRanges>

16 <uniformRange id="current" start="0" end="10" numberOfPoints="100" type="linear" />

17 </listOfRanges>

18 <listOfChanges>

19 <setValue target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="JO_v0®’']"
20 range="current" modelReference="modell">

21 <math xmlns="http://www.w3.org/1998/Math/MathML">

22 <ci> current </ci>

86

https://sed-ml.org/examples/L1V3/L1V3_repeated-steady-scan-oscli/repeated-steady-scan-oscli.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-steady-scan-oscli/repeated-steady-scan-oscli.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-steady-scan-oscli.omex
https://sed-ml.org/examples/L1V3/L1V3_repeated-steady-scan-oscli.omex

plotl (Steady State Scan (Oscli))

— s1.1(s1)
52_1(52)

s1 52 0.0

0 2 4 6 8 10
JO_v0_1 (Jo_vO0)
Figure A.5: The simulation result from

the simulation description given in List- Figure A.6: Simulation with tellurium

ing A.4. Simulation with SED-ML web [6]-
tools [2].

23 </math>

24 </setValue>

25 </listOfChanges>

26 <listOfSubTasks>

27 <subTask order="1" task="task0" />

28 </listOfSubTasks>

29 </repeatedTask>

30 </listOfTasks>
31 <listOfDataGenerators>

32 <dataGenerator id="JO_v0_1" name="JO_v0">

33 <listOfVariables>

34 <variable id="JO_vO0" name="JO_v0" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfParameters/sbml:parameter[@id="J0_vO®’']" />

35 </listOfVariables>

36 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

37 <ci> JO_vO </ci>

38 </math>

39 </dataGenerator>

10 <dataGenerator id="S1_1" name="S1">

41 <listOfVariables>

42 <variable id="S1" name="S1" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S1"]" />

43 </listOfVariables>

44 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

45 <ci> S1 </ci>

46 </math>

47 </dataGenerator>

48 <dataGenerator id="S2_1" name="S2">

49 <listOfVariables>

50 <variable id="S2" name="S2" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S2"]" />

51 </listOfVariables>

52 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

53 <ci> S2 </ci>

54 </math>

55 </dataGenerator>

56 </listOfDataGenerators>

57 <listO0fOutputs>

58 <plot2D id="plotl" name="Steady State Scan (Oscli)">

59 <listOfCurves>

60 <curve id="curvel" logX="false" logY="false" xDataReference="J0_v0_1" yDataReference="S1_1" />

61 <curve id="curve2" logX="false" logY="false" xDataReference="J0_v0O_1" yDataReference="S2_1" />

62 </listOfCurves>

63 </plot2D>

64 <report id="reportl" name="Steady State Values">

65 <listOfDataSets>

66 <dataSet id="coll" dataReference="JO_v0_1" label="JO_vO0" />

67 <dataSet id="col2" dataReference="S1_1" label="S1" />

68 <dataSet id="col3" dataReference="S2_1" label="S2" />

69 </listOfDataSets>

70 </report>

71 </1listOfOutputs>
72 </sedML>

Listing A.4: SED-ML document implementing the one dimensional steady state parameter scan

87

A.3.3 Stochastic simulation (L1V3_repeated-stochastic-runs.omex)

In this example a repeatedTask is used to run a stochastic simulation multiple times. Running just one
stochastic trace does not provide a complete picture of the behavior of a system. A large number of such
traces is needed. This example demonstrates the basic use case of running ten traces of a simulation
by using a repeatedTask which runs ten uniform time course simulations (each performing a stochastic
simulation run).

NOTE: This example produces three dimensional results (time, species concentration, multiple repeats).
SED-ML Level 1 Version 4 provides ways to post-process these values with the dimensionTerm of the
Variable class, but here they are not used, meaning that every individual element in the xDataReference
is plotted vs. every individual element in the yDataReference, effectively flattening the values by over-
laying them onto the desired plot. The breaks between dimensions should be used as breaks between
any connected lines, so that spurious lines from the end of one plot to the beginning of the next are not
present.

This document can be found at https://sed-ml.org/examples/L1V3/L1V3_repeated-stochastic-runs/
repeated-stochastic-runs.xml, and an OMEX version at https://sed-ml.org/examples/L1V3/L1V3_
repeated-stochastic-runs.omex.

MAPK feedback (Kholodenko, 2000) (stochastic trace)

—— WAFK —— WAFK_P —— WAPK_FF —— WRK | plotl (MAPK feedback (Kl 2000) (ic trace))
MKKK MKK_P MKKK_P
350 T T T T 300

250

2007 MAPK_P1 (MAPK_P)
MKK_P1 (MKK_P)
MKKK_P1 (MKKK_P)
MAPK1 (MAPK
MKKK1 (MKKK)
MKK1 (MKK)
MAPK_PP1 (MAPK_PP)

150 -

100 4

50

5000

0 500 1000 1500 2000 2500 3000 3500 4000
timel (time)

Figure A.7: The simulation result from
the simulation description given in List- s
ing A.5. Simulation with SED-ML web [6]-
tools [2].

Figure A.8: Simulation with tellurium

1 <?xml version="1.0" encoding="utf-8"?>

2 <sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">

3 <listOfSimulations>

4 <uniformTimeCourse id="timecoursel"” initialTime="0" outputStartTime="0" outputEndTime="4000"
numberOfPoints="1000">

5 <algorithm kisaoID="KISAO:0000241" />

6 </uniformTimeCourse>

7 </listOfSimulations>

8 <listOfModels>

9 <model id="modell" language="urn:sedml:language:sbml" source="./BorisEJB.xml" />

10 </listO0OfModels>

11 <listOfTasks>

12 <task id="task0®" modelReference="modell" simulationReference="timecoursel" />

13 <repeatedTask id="taskl" resetModel="true" range="current">

14 <listOfRanges>

15 <uniformRange id="current" start="0" end="10" numberOfPoints="10" type="linear" />
16 </listOfRanges>

17 <listOfSubTasks>

18 <subTask order="1" task="task®" />

19 </1listOfSubTasks>

20 </repeatedTask>

21 </listO0OfTasks>
22 <listOfDataGenerators>

23 <dataGenerator id="timel" name="time">

24 <listOfVariables>

25 <variable id="time" taskReference="taskl" symbol="urn:sedml:symbol:time" />
26 </listOfVariables>

27 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

28 <ci> time </ci>

29 </math>

30 </dataGenerator>

88

https://sed-ml.org/examples/L1V3/L1V3_repeated-stochastic-runs/repeated-stochastic-runs.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-stochastic-runs/repeated-stochastic-runs.xml
https://sed-ml.org/examples/L1V3/L1V3_repeated-stochastic-runs.omex
https://sed-ml.org/examples/L1V3/L1V3_repeated-stochastic-runs.omex

31 <dataGenerator id="MAPK1" name="MAPK">

32 <listOfVariables>

33 <variable id="MAPK" name="MAPK" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:1listOfSpecies/sbml:species[@id="MAPK’]" />

34 </listOfVariables>

35 <math xmlns="http://www.w3.org/1998/Math/MathML">

36 <ci> MAPK </ci>

37 </math>

38 </dataGenerator>

39 <dataGenerator id="MAPK_P1" name="MAPK_P">

10 <listOfVariables>

41 <variable id="MAPK_P" name="MAPK_P" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="MAPK_P’]" />

42 </listOfVariables>

43 <math xmlns="http://www.w3.org/1998/Math/MathML">

14 <ci> MAPK_P </ci>

45 </math>

46 </dataGenerator>

47 <dataGenerator id="MAPK_PP1" name="MAPK_PP">

48 <listOfVariables>

49 <variable id="MAPK_PP" name="MAPK_PP" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="MAPK_PP’']" />

50 </listOfVariables>

51 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

52 <ci> MAPK_PP </ci>

53 </math>

54 </dataGenerator>

55 <dataGenerator id="MKK1" name="MKK">

56 <listOfVariables>

57 <variable id="MKK" name="MKK" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="MKK’]" />

58 </listOfVariables>

59 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

60 <ci> MKK </ci>

61 </math>

62 </dataGenerator>

63 <dataGenerator id="MKK_P1" name="MKK_P">

64 <listOfVariables>

65 <variable id="MKK_P" name="MKK_P" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:1istOfSpecies/sbml:species[@id="MKK_P’]" />

66 </listOfVariables>

67 <math xmlns="http://www.w3.org/1998/Math/MathML">

68 <ci> MKK_P </ci>

69 </math>

70 </dataGenerator>

71 <dataGenerator id="MKKK1" name="MKKK">

72 <listOfVariables>

73 <variable id="MKKK" name="MKKK" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="MKKK’]" />

74 </listOfVariables>

75 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

76 <ci> MKKK </ci>

77 </math>

78 </dataGenerator>

79 <dataGenerator id="MKKK_P1" name="MKKK_P">

80 <listOfVariables>

81 <variable id="MKKK_P" name="MKKK_P" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="MKKK_P’]" />

82 </listOfVariables>

83 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

84 <ci> MKKK_P </ci>

85 </math>

86 </dataGenerator>

87 </listOfDataGenerators>
88 <listOfOutputs>

89 <plot2D id="plotl" name="MAPK feedback (Kholodenko, 2000) (stochastic trace)">

90 <listOfCurves>

91 <curve id="curvel" logX="false" logY="false" xDataReference="timel" yDataReference="MAPK1" />
92 <curve id="curve2" logX="false" logY="false" xDataReference="timel" yDataReference="MAPK_P1" />
93 <curve id="curve3" logX="false" logY="false" xDataReference="timel" yDataReference="MAPK_PP1" />
94 <curve id="curve4" logX="false" logY="false" xDataReference="timel" yDataReference="MKK1" />

95 <curve id="curve5" logX="false" logY="false" xDataReference="timel" yDataReference="MKKK1" />
96 <curve id="curve6" logX="false" logY="false" xDataReference="timel" yDataReference="MKK_P1" />
97 <curve id="curve7" logX="false" logY="false" xDataReference="timel" yDataReference="MKKK_P1" />
98 </1listO0fCurves>

99 </plot2D>

100 </1listOfOutputs>
101 </sedML>

Listing A.5: SED-ML document implementing repeated stochastic runs

A.3.4 Simulation perturbation (L1V3_oscli-nested-pulse.omex)

Often it is interesting to see how the dynamic behavior of a model changes when some perturbations are
applied to the model. In this example a repeatedTask is used iterating a oneStep task (that advances an

89

ODE integration to the next output step). During the steps a single parameter is modified effectively
causing the oscillations of a model to stop. Once the value is reset the oscillations recover.

Note: In the example a functionalRange is used, although the same result could also be achieved using
the setValue element directly.

This document can be found at the URL https://sed-ml.org/examples/L1V3/L1V3_oscli-nested-pulse/
oscli-nested-pulse.xml, and an OMEX version at the URL https://sed-ml.org/examples/L1V3/
L1V3_oscli-nested-pulse.omex.

plotl (Species Concentration under vO pulse (Oscli))

—— S1.1(s1)
4 4 —— 52.1(52)

—— J0_v0_1 (J0_v0)
K 1
0
0 2 4 6 8 10

s1 s2 Jo_vo 0

0 2 4 6 8 10
time_1 (time)
Figure A.9: The simulation result from
the simulation description given in List- Figure A.10: Simulation with tellurium
ing A.6. Simulation with SED-ML web [6].
tools [2].

<?xml version="1.0" encoding="utf-8"?>
<sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">

1
2

3 <listOfSimulations>

4 <oneStep id="stepper" step="0.1">

5 <algorithm kisaoID="KISAO:0000019" />

6 </oneStep>

7 </listOfSimulations>

8 <listOfModels>

9 <model id="modell" language="urn:sedml:language:sbml" source="./oscli.zml" />

10 </listO0OfModels>

11 <1listOfTasks>

12 <task id="task0" modelReference="modell" simulationReference="stepper" />
13 <repeatedTask id="taskl" resetModel="false" range="index">
14 <listOfRanges>

15 <uniformRange id="index" start="0" end="10" numberOfPoints="100" type="linear" />
16 <functionalRange id="current" range="index">

17 <math xmlns="http://www.w3.0rg/1998/Math/MathML">
18 <piecewise>

19 <piece>

20 <cn> 8 </cn>

21 <apply>

22 <lt />

23 <ci> index </ci>

24 <cn> 1 </cn>

25 </apply>

26 </piece>

27 <piece>

28 <cn> 0.1 </cn>

29 <apply>

30 <and />

31 <apply>

32 <geq />

33 <ci> index </ci>

34 <cn> 4 </cn>

35 </apply>

36 <apply>

37 <1t />

38 <ci> index </ci>

39 <cn> 6 </cn>

40 </apply>

a1 </apply>

42 </piece>

43 <otherwise>

44 <cn> 8 </cn>

45 </otherwise>

90

https://sed-ml.org/examples/L1V3/L1V3_oscli-nested-pulse/oscli-nested-pulse.xml
https://sed-ml.org/examples/L1V3/L1V3_oscli-nested-pulse/oscli-nested-pulse.xml
https://sed-ml.org/examples/L1V3/L1V3_oscli-nested-pulse.omex
https://sed-ml.org/examples/L1V3/L1V3_oscli-nested-pulse.omex

46 </piecewise>

47 </math>

48 </functionalRange>

49 </listOfRanges>

50 <listOfChanges>

51 <setValue target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="JO_v0®’']"
52 range="current" modelReference="modell">

53 <math xmlns="http://www.w3.org/1998/Math/MathML">
54 <ci> current </ci>

55 </math>

56 </setValue>

57 </listOfChanges>

58 <listOfSubTasks>

59 <subTask order="1" task="task0" />

60 </1listO0fSubTasks>

61 </repeatedTask>

62 </1listOfTasks>
63 <listOfDataGenerators>

64 <dataGenerator id="time_1" name="time">

65 <listOfVariables>

66 <variable id="time" symbol="urn:sedml:symbol:time" taskReference="taskl" />

67 </listOfVariables>

68 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

69 <ci> time </ci>

70 </math>

71 </dataGenerator>

72 <dataGenerator id="JO_vO_1" name="J0_v0">

73 <listOfVariables>

74 <variable id="JO_vO0" name="JO_v0" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfParameters/sbml:parameter[@id="J0_v0®’']" />

75 </listOfVariables>

76 <math xmlns="http://www.w3.0org/1998/Math/MathML">

77 <ci> JO_vO </ci>

78 </math>

79 </dataGenerator>

80 <dataGenerator id="S1_1" name="S1">

81 <listOfVariables>

82 <variable id="S1" name="S1" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S1’]" />

83 </listOfVariables>

84 <math xmlns="http://www.w3.0org/1998/Math/MathML">

85 <ci> S1 </ci>

86 </math>

87 </dataGenerator>

88 <dataGenerator id="S2_1" name="S2">

89 <listOfVariables>

90 <variable id="S2" name="S2" taskReference="taskl" target="/sbml:sbml/sbml:model/
sbml:listOfSpecies/sbml:species[@id="S2"]" />

91 </listOfVariables>

92 <math xmlns="http://www.w3.o0rg/1998/Math/MathML">

93 <ci> S2 </ci>

94 </math>

95 </dataGenerator>

9% </listOfDataGenerators>
97 <list0fOutputs>

98 <plot2D id="plotl" name="Species Concentration under vO® pulse (Oscli)">

99 <listOfCurves>

100 <curve id="curvel" logX="false" logY="false" xDataReference="time_1" yDataReference="S1_1" />
101 <curve id="curve2" logX="false" logY="false" xDataReference="time_1" yDataReference="S2_1" />
102 <curve id="curve3" logX="false" logY="false" xDataReference="time_1" yDataReference="JO_vO_1" />
103 </list0fCurves>

104 </plot2D>

105 <report id="reportl" name="Species Concentration under v0® pulse (Oscli)">

166 <listOfDataSets>

107 <dataSet id="col®" dataReference="time_1" label="time" />

108 <dataSet id="coll" dataReference="JO_v0O_1" label="10_vO0" />

109 <dataSet id="col2" dataReference="S1_1" label="S1" />

110 <dataSet id="col3" dataReference="S2_1" label="S2" />

111 </listOfDataSets>

112 </report>

113 </1listO0fOutputs>
114 </sedML>

Listing A.6: SED-ML document implementing the perturbation experiment

A.3.5 2D steady state parameter scan (L1V3_parameter-scan-2d.omex)

This example uses a repeated Task which runs over another repeatedTask which performs a steady state
computation. Each repeated simulation task modifies a different parameter.

NOTE: This example produces three dimensional results (time, species concentration, multiple repeats).
SED-ML Level 1 Version 4 provides ways to post-process these values with the dimensionTerm at-
tribute of the Variable class, but here they are not used, meaning that every individual element in the
xDataReference is plotted vs. every individual element in the yDataReference, effectively flattening

91

the values by overlaying them onto the desired plot. The breaks between dimensions should be used as
breaks between any connected lines, so that spurious lines from the end of one plot to the beginning of
the next are not present.

This document can be found at the URL https://sed-ml.org/examples/L1V3/L1V3_parameter-scan-2d/
parameter-scan-2d.xml, and an OMEX version at the URL https://sed-ml.org/examples/L1V3/
L1V3_parameter-scan-2d.omex.

plotl (Steady State Scan (Boris 2D))

250 [— MKK_1 (MKK)
250~ MKK_P_L(MKK_P)
200
150 200
100
150 W
0
RO
50 /\\\\
0 100 ‘\\\
5 10 15 20 25 30 35 40 \‘\ -
MKK MKK MKK MKK MKK MKK \
MKK MKK MKK MKK_P MKK_P 50
MKK_P MKK_P MKK_P MKK_P MKK_P —
MKK_P MKK_P
6 _;: 1'0 1'5 2'0 2'5 3'0 3'5 4'0
J4_KK5_1 (J4_KK5)
plot2 (MKK_TOT vs J4_KK5)
315 —— MKK_TOT (MKK_TOT)
310
300 305
300
295
5 10 15 20 25 30 35 40 290
MKK_TOT MKK_TOT MKK_TOT MKK_TOT
MKK_TOT MKK_TOT MKK_TOT MKK_TOT 285
MKK_TOT
0 5 10 15 20 25 30 35 40
J4_KK5_1 (J4_KK5)
Figure A.11: The simulation result gained Figure A.12: Simulation with tellurium
from the simulation description given in [6]

Listing A.7. Simulation with SED-ML
web tools [2].

1 <?7xml version="1.0" encoding="utf-8"?7>

2 <sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">
3 <listOfSimulations>

4 <steadyState id="steadyl">

5 <algorithm kisaoID="KISAO:0000282" />

6 </steadyState>

7 </listOfSimulations>

8 <listOfModels>

9 <model id="modell" language="urn:sedml:language:sbml" source="BorisEJB.xml" />
10 </listOfModels>

11 <listOfTasks>

12 <task id="task0" modelReference="modell" simulationReference="steadyl" />
13 <repeatedTask id="taskl" resetModel="false" range="current">

14 <listOfRanges>

15 <vectorRange id="current">

16 <value>1l</value>

17 <value>5</value>

18 <value>10</value>

19 <value>50</value>

20 <value>60</value>

21 <value>70</value>

22 <value>80</value>

23 <value>90</value>

24 <value>100</value>

25 </vectorRange>

26 </listOfRanges>

27 <listOfChanges>

92

https://sed-ml.org/examples/L1V3/L1V3_parameter-scan-2d/parameter-scan-2d.xml
https://sed-ml.org/examples/L1V3/L1V3_parameter-scan-2d/parameter-scan-2d.xml
https://sed-ml.org/examples/L1V3/L1V3_parameter-scan-2d.omex
https://sed-ml.org/examples/L1V3/L1V3_parameter-scan-2d.omex

60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83

84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100

102
103
104
105
106
107
108

<setValue target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="J1_KK2’]"

range="current" modelReference="modell">
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> current </ci>
</math>
</setValue>
</listOfChanges>
<listOfSubTasks>
<subTask order="1" task="task2" />
</listOfSubTasks>
</repeatedTask>
<repeatedTask id="task2" resetModel="false" range="currentl">
<listOfRanges>

<uniformRange id="currentl" start="1" end="40" numberOfPoints="100" type="linear" />

</listOfRanges>
<listOfChanges>

<setValue target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="J4_KK5’']"

range="currentl"” modelReference="modell">
<math xmlns="http://www.w3.0org/1998/Math/MathML">
<ci> currentl </ci>
</math>
</setValue>
</listOfChanges>
<listOfSubTasks>
<subTask order="1" task="task0" />
</1listO0fSubTasks>
</repeatedTask>
</1listOfTasks>
<listOfDataGenerators>
<dataGenerator id="J4_KK5_1" name="J4_KK5">
<listOfVariables>

<variable id="J4_KK5" name="J4_KK5" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:listOfParameters/sbml:parameter[@id="J4_KK5’']" />
</listOfVariables>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci> J4_KK5 </ci>
</math>
</dataGenerator>
<dataGenerator id="J1_KK2_1" name="J1_KK2">
<listOfVariables>

<variable id="J1_KK2" name="J1_KK2" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:listOfParameters/sbml:parameter[@id="J1_KK2’]" />
</listOfVariables>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci> J1_KK2 </ci>
</math>
</dataGenerator>
<dataGenerator id="MKK_1" name="MKK">
<listOfVariables>
<variable id="MKK" name="MKK" taskReference="taskl" target=
sbml:1istOfSpecies/sbml:species[@id="MKK’]" />
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> MKK </ci>
</math>
</dataGenerator>
<dataGenerator id="MKK_P_1" name="MKK_P">
<listOfVariables>

"/sbml:sbml/sbml:model/

<variable id="MKK_P" name="MKK_P" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:listOfSpecies/sbml:species[@id="MKK_P’]" />
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> MKK_P </ci>
</math>
</dataGenerator>
<dataGenerator id="MKK_PP_1" name="MKK_PP_1">
<listOfVariables>
<variable id="MKK_PP_1" name="MKK_PP" taskReference="taskl"
sbml:listOfSpecies/sbml:species[@id="MKK_PP’]" />
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> MKK_PP_1 </ci>
</math>
</dataGenerator>
<dataGenerator id="MKK_TOT" name="MKK_TOT">
<listOfVariables>

target="/sbml:sbml/sbml:model/

<variable id="MKK" name="MKK" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:listOfSpecies/sbml:species[@id="MKK’]" />

<variable id="MKK_P" name="MKK_P" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:listOfSpecies/sbml:species[@id="MKK_P’']" />

<variable id="MKK_PP" name="MKK_PP" taskReference="taskl" target="/sbml:sbml/sbml:model/

sbml:1listOfSpecies/sbml:species[@id="MKK_PP’]" />

</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<apply>
<plus/>

<ci> MKK </ci>
<ci> MKK_P </ci>
<ci> MKK_PP </ci>

93

109
110
111
112

114
115
116
117

118
119
120
121
122

</apply>
</math>
</dataGenerator>
</listOfDataGenerators>
<listO0fOutputs>
<plot2D id="plotl" name="Steady State Scan (Boris 2D)">
<listOfCurves>
<curve id="curvel" logX="false" logY="false" xDataReference="J4_KK5_1" yDataReference="MKK_1" />
<curve id="curve2" logX="false" logY="false" xDataReference="J4_KK5_1" yDataReference="MKK_P_1" /
>
</listO0OfCurves>
</plot2D>
<plot2D id="plot2" name="MKK_TOT vs J4_KK5">
<listOfCurves>
<curve id="curve3" logX="false" logY="false" xDataReference="J4_KK5_1" yDataReference="MKK_TOT" /
>
</list0fCurves>
</plot2D>
<report id="reportl" name="Steady State Values (Boris2D)">
<listOfDataSets>
<dataSet id="col®" dataReference="J4_KK5_1" label="J4_KK5" />
<dataSet id="coll" dataReference="J1_KK2_1" label="J1_KK2" />
<dataSet id="col2" dataReference="MKK_1" label="MKK" />
<dataSet id="col3" dataReference="MKK_P_1" label="MKK_P" />
<dataSet id="col_4" dataReference="MKK_PP_1" label="MKK_PP_1" />
<dataSet id="col4" dataReference="MKK_TOT" label="MKK_TOT" />
</listOfDataSets>
</report>
</list0fOutputs>
</sedML>

Listing A.7: SED-ML document implementing the two dimensional steady state parameter scan

94

A4

A.4.1

Simulation experiments with different model languages

SED-ML allows to specify models in various languages, e.g., SBML [16] and CellML [9] (see Section 3.3.1
for more information). This section demonstrates the same simulation experiment with the model either

in SBML (Appendix A.4.1) or in CellML (Appendix A.4.2).

Van der Pol oscillator in SBML (L1V3_vanderpol-sbml.omex)

The following example provides a SED-ML description for the simulation of the Van der Pol oscillator in
SBML [16]. The time-course and the behavior in the phase plane are plotted. The mathematical model
and the performed simulation experiment are identical to Appendix A.4.2. This document can be found
at https://sed-ml.org/examples/L1V3/L1V3_vanderpol-sbml/vanderpol.xml, and an OMEX version

at https://sed-ml.org/examples/L1V3/L1V3_vanderpol-sbml.omex.

0 20 40 60 80

Series 1

Series 2

-2 -15 -1 -0.5 0 0.5 1

Series 1

100

Figure A.13: The simulation result gained
from the simulation description given in
Listing A.8. Simulation with SED-ML

web tools [2].

kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:
kisaoID="KISAO:

1 <?xml version='1.0’ encoding='UTF-8’?>

2

3 <listOfSimulations>

4 <uniformTimeCourse id="simulationl"
outputStartTime="0">

5 <algorithm kisaoID="KISAO:0000019">

6 <listOfAlgorithmParameters>

7 <algorithmParameter

8 <algorithmParameter

9 <algorithmParameter

10 <algorithmParameter

11 <algorithmParameter

12 <algorithmParameter

13 <algorithmParameter

14 <algorithmParameter

15 <algorithmParameter

16 <algorithmParameter

kisaoID="KISAO:

95

initialTime="0"

~

-

o

|
-

~

-

o

plotl
—— yDataGeneratorl_1 \ \
—— yDataGenerator2_1
6 Z‘O 40 60 80 100
plot2
—— yDataGenerator3_1
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

xDataGenerator3_1

Figure A.14: Simulation with tellurium

[6].

0000211"
0000475"
0000481"
0000476"
0000477"
0000480"
0000415"
0000467"
0000478"
0000209"

<sedML level="1" version="3" xmlns="http://sed-ml.org/sed-ml/levell/version3">

numberOfPoints="1000" outputEndTime="100"

value="1e-07"/>
value="BDF"/>
value="true"/>
value="Newton"/>
value="Dense"/>
value="0"/>
value="500"/>
value="0"/>
value="Banded"/>
value="1e-07"/>

https://sed-ml.org/examples/L1V3/L1V3_vanderpol-sbml/vanderpol.xml
https://sed-ml.org/examples/L1V3/L1V3_vanderpol-sbml.omex

66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97

98

<algorithmParameter kisaoID="KISA0:0000479" value="0"/>
</listOfAlgorithmParameters>

</algorithm>
</uniformTimeCourse>
</listOfSimulations>
<listOfModels>

<model id="model" language="urn:sedml:language:sbml" source="vanderpol-sbml.xml"/>

</listOfModels>
<listOfTasks>

<repeatedTask id="repeatedTask" range="once" resetModel="true">

<listOfRanges>

<vectorRange id="once">
<value> 1 </value>

</vectorRange>
</listOfRanges>
<listOfSubTasks>

<subTask order="1" task="taskl"/>

</1ist0fSubTasks>
</repeatedTask>

<task id="taskl" modelReference="model"

</1listO0fTasks>
<listOfDataGenerators>

<dataGenerator id="xDataGeneratorl_1">

<listOfVariables>

<variable id="xVariablel_ 1"

</listOfVariables>

simulationReference="simulationl"/>

taskReference="taskl" symbol="urn:sedml:symbol:time" />

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> xVariablel_1 </ci>

</math>
</dataGenerator>

<dataGenerator id="yDataGeneratorl_1">

<listOfVariables>

<variable id="yVariablel_1"

target="/sbml:sbml/sbml:model/sbml:1istOfSpecies/sbml:species

[@id="x"]" taskReference="repeatedTask" modelReference="model"/>

</listOfVariables>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> yVariablel_1 </ci>

</math>
</dataGenerator>

<dataGenerator id="xDataGenerator2_1">

<listOfVariables>

<variable id="xVariable2_1"

</listOfVariables>

taskReference="taskl" symbol="urn:sedml:symbol:time" />

<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci> xVariable2_1 </ci>

</math>
</dataGenerator>

<dataGenerator id="yDataGenerator2_1">

<listOfVariables>

<variable id="yVariable2_1"

target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species

[@id="y’]" taskReference="repeatedTask" modelReference="model"/>

</listOfVariables>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> yVariable2_1 </ci>

</math>
</dataGenerator>

<dataGenerator id="xDataGenerator3_1">

<listOfVariables>

<variable id="xVariable3_1"

target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/sbml:species

[@id="x"]" taskReference="repeatedTask" modelReference="model"/>

</listOfVariables>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> xVariable3_1 </ci>

</math>
</dataGenerator>

<dataGenerator id="yDataGenerator3_1">

<listOfVariables>

<variable id="yVariable3_1"

target="/sbml:sbml/sbml:model/sbml:1istOfSpecies/sbml:species

[@id="y’]" taskReference="repeatedTask" modelReference="model"/>

</listOfVariables>

<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> yVariable3_1 </ci>

</math>
</dataGenerator>
</listOfDataGenerators>
<listO0fOutputs>
<plot2D id="plotl">
<listOfCurves>
<curve id="curvel_1"

logX="false"

log¥="false" xDataReference="xDataGeneratorl_1"

yDataReference="yDataGeneratorl_1"/>

<curve id="curve2_1"

logX="false"

log¥="false" xDataReference="xDataGenerator2_1"

yDataReference="yDataGenerator2_1"/>

</1listOfCurves>
</plot2D>
<plot2D id="plot2">
<listOfCurves>
<curve id="curve3_1"

logX="false"

logY="false" xDataReference="xDataGenerator3_1"

yDataReference="yDataGenerator3_1"/>

</listOfCurves>

96

A.4.2

99
100
101

</plot2D>

</1listOfOutputs>

</sedML>

Listing A.8: Van der Pol Model (SBML) Simulation Description in SED-ML

Van der Pol oscillator in CellML (L1V3_vanderpol-cellml.omex)

The following example provides a SED-ML description for the simulation of the Van der Pol model in
CellML [9]. The time-course and the behavior in the phase plane are plotted. The mathematical model
and the performed simulation experiment are identical to Appendix A.4.1. This document can be found at
https://sed-ml.org/examples/L1V3/L1V3_vanderpol-cellml/vanderpol.xml, and an OMEX version

at https://sed-ml.org/examples/L1V3/L1V3_vanderpol-cellml.omex.

40 60 80

Series 1 Series 2

-0.5 0 0.5 1

Series 1

100

Figure A.16:

[11].

Figure A.15: The simulation result gained
from the simulation description given in
Listing A.9. Simulation with SED-ML

web tools [2].

<?xml version='1.0’

<sedML level="1" version="3" xmlns="http://sed-ml.org/sed-ml/levell/version3" xmlns:cellml="http://www.

encoding="UTF-8’7>

cellml.org/cellml/1.0#">
<listOfSimulations>

<uniformTimeCourse id="simulationl"

outputStartTime="0">
<algorithm kisaoID="KISAO:0000019">
<listOfAlgorithmParameters>

<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter
<algorithmParameter

initialTime="0"

kisaoID="KISAO:0000211"
kisaoID="KISAO:0000475"
kisaoID="KISAO:0000481"
kisaoID="KISAO:0000476"
kisaoID="KISA0:0000477"
kisaoID="KISAO:0000480"
kisaoID="KISAO:0000415"
kisaoID="KISAO:0000467"
kisaoID="KISAO:0000478"
kisaoID="KISA0:0000209"
kisaoID="KISAO:0000479"

97

numberOfPoints="1000"

value="1e-07"/>
value="BDF" />
value="true"/>
value="Newton" />
value="Dense"/>
value="0"/>
value="500"/>
value="0"/>
value="Banded"/>
value="1e-07"/>
value="0"/>

Simulation with OpenCOR

outputEndTime="100"

https://sed-ml.org/examples/L1V3/L1V3_vanderpol-cellml/vanderpol.xml
https://sed-ml.org/examples/L1V3/L1V3_vanderpol-cellml.omex

42
43
44
45
46
47
48
49

66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92

93
94
95
96
97

</listOfAlgorithmParameters>
</algorithm>
</uniformTimeCourse>

</listOfSimulations>
<listOfModels>
<model id="model" language="urn:sedml:language:cellml.1_0" source="vanderpol-model.cellml"/>
</1listO0fModels>
<listOfTasks>

<repeatedTask id="repeatedTask" range="once" resetModel="true">
<listOfRanges>
<vectorRange id="once">
<value> 1 </value>
</vectorRange>
</listOfRanges>
<listOfSubTasks>
<subTask order="1" task="taskl"/>
</1listO0fSubTasks>
</repeatedTask>
<task id="taskl" modelReference="model" simulationReference="simulationl"/>

</1list0OfTasks>
<listOfDataGenerators>

<dataGenerator id="xDataGeneratorl_1">
<listOfVariables>

<variable id="xVariablel_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="t’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> xVariablel_1 </ci>

</math>

</dataGenerator>

<dataGenerator id="yDataGeneratorl_1">
<listOfVariables>

<variable id="yVariablel_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="x’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> yVariablel_1 </ci>

</math>

</dataGenerator>

<dataGenerator id="xDataGenerator2_1">
<listOfVariables>

<variable id="xVariable2_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="t’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> xVariable2_1 </ci>

</math>

</dataGenerator>

<dataGenerator id="yDataGenerator2_1">
<listOfVariables>

<variable id="yVariable2_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="y’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> yVariable2_1 </ci>

</math>

</dataGenerator>

<dataGenerator id="xDataGenerator3_1">
<listOfVariables>

<variable id="xVariable3_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="x’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> xVariable3_1 </ci>

</math>

</dataGenerator>

<dataGenerator id="yDataGenerator3_1">
<listOfVariables>

<variable id="yVariable3_1" target="/cellml:model/cellml:component[@name="main’]/

cellml:variable[@name="y’]" taskReference="repeatedTask"/>
</listOfVariables>
<math xmlns="http://www.w3.o0rg/1998/Math/MathML">
<ci> yVariable3_1 </ci>
</math>
</dataGenerator>

</listOfDataGenerators>
<list0fOutputs>

<plot2D id="plotl">
<listOfCurves>

<curve id="curvel_1" logX="false" logY="false" xDataReference="xDataGeneratorl_1"

yDataReference="yDataGeneratorl_1"/>
<curve id="curve2_1" logX="false" logY="false
yDataReference="yDataGenerator2_1"/>
</1listO0fCurves>
</plot2D>
<plot2D id="plot2">
<listOfCurves>

<curve id="curve3_1" logX="false" logY="false" xDataReference="xDataGenerator3_1"

yDataReference="yDataGenerator3_1"/>

98

xDataReference="xDataGenerator2_1"

98 </1listO0fCurves>
99 </plot2D>

100 </1listOfOutputs>

101 </sedML>

Listing A.9: Van der Pol Model (CellML) Simulation Description in SED-ML

99

A5

A.5.1

Reproducing publication results

SED-ML allows to describe simulation experiments from publications in a reproducible manner. This
section provides such examples.

Le Loup model (L1V3_leloup-sbml.omex)

The following example provides a SED-ML description for the simulation of the model based on the
publication [18].

The model is referenced by its SED-ML id modell and refers to the model with the URL https://www.
ebi.ac.uk/biomodels/model/download/BIOMDOOOOO00012.27filename=BIOMDOOOOOOO012_url.xml. A
second model is defined in the example, using modell as a source and applying additional changes to it,
in this case updating two model parameters.

One simulation setup is defined in the 1istOfSimulations. It is a uniformTimeCourse over 380 time
units, providing 1000 output points. The algorithm used is the CVODE solver, as denoted by the KiSAO
ID KiSAO:0000019.

A number of dataGenerators are defined, which are the prerequisite for defining the simulation output.
The first dataGenerator with id time collects the simulation time. timl maps on the Mt entity in the
model that is used in taskl which in the model modell. The dataGenerator named per_timl maps on
the Cn entity in modell. Finally the fourth and fifth dataGenerators map on the Mt and per_tim entity
respectively in the updated model with ID model2.

The output defined in the experiment consists of three 2D plots. The first plot has two curves and
provides the time course of the simulation using the tim mRNA concentrations from both tasks. The
second plot shows the per_tim concentration against the tim concentration for the oscillating model.
The third plot shows the same plot for the chaotic model. The resulting three plots are depicted in
Figure A.17 and A.18. This document can be found at https://sed-ml.org/examples/L1V3/L1V3_
leloup-sbml/leloup-sbml.xml, and an OMEX version at https://sed-ml.org/examples/L1V3/L1V3_
leloup-sbml.omex.

1 <?xml version="1.0" encoding="utf-8"?>

2 <sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">

3 <listOfSimulations>

4 <uniformTimeCourse id="simulationl" initialTime="0" outputStartTime="0" outputEndTime="380"
numberOfPoints="1000">

5 <algorithm kisaoID="KISAO:0000019" />

6 </uniformTimeCourse>

7 </listOfSimulations>

8 <listOfModels>

9 <model id="modell" name="Circadian Oscillations" language="urn:sedml:language:sbml" source="https://

www.ebi.ac.uk/biomodels/model/download/BIOMDOOOO0O00127?filename=BIOMDOOOOOOOO1I2 _url.xml" />

10 <model id="model2" name="Circadian Chaos" language="urn:sedml:language:sbml" source="#modell">

11 <listOfChanges>

12 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="
V_mT"]/@value" newValue="60.28" />

13 <changeAttribute target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="
V_dT"]/@value" newValue="4.8" />

14 </listOfChanges>

15 </model>

16 </list0OfModels>

17 <1listOfTasks>

18 <task id="taskl" modelReference="modell" simulationReference="simulationl" />
19 <task id="task2" modelReference="model2" simulationReference="simulationl" />
20 </1listOfTasks>

21 <listOfDataGenerators>

22 <dataGenerator id="time" name="time">

23 <listOfVariables>

24 <variable id="t" taskReference="taskl" symbol="urn:sedml:symbol:time" />

25 </listOfVariables>

26 <math xmlns="http://www.w3.0rg/1998/Math/MathML">

27 <ci> t </ci>

28 </math>

29 </dataGenerator>

30 <dataGenerator id="timl" name="tim mRNA">

31 <listOfVariables>

32 <variable id="v1" taskReference="taskl" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/
sbml:species[@id="Mt’]" />

33 </listOfVariables>

34 <math xmlns="http://www.w3.0org/1998/Math/MathML">

35 <ci> vl </ci>

36 </math>

37 </dataGenerator>

38 <dataGenerator id="per_timl" name="nuclear PER-TIM complex">

39 <listOfVariables>

100

https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012.2?filename=BIOMD0000000012_url.xml
https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000012.2?filename=BIOMD0000000012_url.xml
https://sed-ml.org/examples/L1V3/L1V3_leloup-sbml/leloup-sbml.xml
https://sed-ml.org/examples/L1V3/L1V3_leloup-sbml/leloup-sbml.xml
https://sed-ml.org/examples/L1V3/L1V3_leloup-sbml.omex
https://sed-ml.org/examples/L1V3/L1V3_leloup-sbml.omex

40

41
42
43
44
45
46
47
48

plotl (tim mRNA with Oscillation and Chaos)
—— tim1 (tim mRNA)
~—— tim2 (tim mRNA (changed parameters))

50 100 150 200 250 300 350
tim mRNA

tim mRNA (changed parameters)

100 150 200 250 300 350
time (time)

oA
o
=]

plot2 (tim mRNA limit cycle (Oscillation))
—— tim1 (tim mRNA) |

3.0

25

2.0

15

1.0

0.5

0.5 1 15 2 2.5 3
tim mRNA 0.0

0.0 0.5 1.0 15 2.0 25 3.0
per_tim1 (nuclear PER-TIM complex)

plot3 (tim mRNA limit cycle (chaos))
—— tim2 (tim mRNA (changed parameters))-

0.5 1 15 2 25 3 3.5 4

tim mRNA (changed parameters)

o

1 2 3 4
per_tim2 (nuclear PER-TIM complex)

Figure A'17.: The §imulati0ﬁ rgsult 'gamgd Figure A.18: Simulation with tellurium
from the simulation description given in [6]
Listing A.10. Simulation with SED-ML ’
web tools [2].

<variable id="vla" taskReference="taskl" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/
sbml:species[@id="Cn’]" />
</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci> vla </ci>
</math>
</dataGenerator>
<dataGenerator id="tim2" name="tim mRNA (changed parameters)">
<listOfVariables>
<variable id="v2" taskReference="task2" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/
sbml:species[@id="Mt’]" />
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci> v2 </ci>
</math>
</dataGenerator>
<dataGenerator id="per_tim2" name="nuclear PER-TIM complex">
<listOfVariables>

101

56 <variable id="v2a" taskReference="task2" target="/sbml:sbml/sbml:model/sbml:1listOfSpecies/
sbml:species[@id="Cn’]" />

57 </listOfVariables>

58 <math xmlns="http://www.w3.0rg/1998/Math/MathML">
59 <ci> v2a </ci>

60 </math>

61 </dataGenerator>

62 </listOfDataGenerators>
63 <list0fOutputs>

64 <plot2D id="plotl" name="tim mRNA with Oscillation and Chaos">

65 <listOfCurves>

66 <curve id="cl" logX="false" logY="false" xDataReference="time" yDataReference="timl" />

67 <curve id="c2" logX="false" logY="false" xDataReference="time" yDataReference="tim2" />

68 </1listO0fCurves>

69 </plot2D>

70 <plot2D id="plot2" name="tim mRNA limit cycle (Oscillation)">

71 <listOfCurves>

72 <curve id="c3" logX="false" logY="false" xDataReference="per_timl" yDataReference="timl" />
73 </list0fCurves>

74 </plot2D>

75 <plot2D id="plot3" name="tim mRNA limit cycle (chaos)">

76 <listO0OfCurves>

77 <curve id="c4" logX="false" logY="false" xDataReference="per_tim2" yDataReference="tim2" />
78 </listO0fCurves>

79 </plot2D>

80 </listO0fOutputs>
81 </sedML>

Listing A.10: LeLoup Model Simulation Description in SED-ML

A.5.2 lkappaB signaling (L1V3_ikkapab.omex)

The following example provides a SED-ML description for the simulation of the IkappaB-NF-kappaB
signaling module described in [14].

This model is referenced by its SED-ML ID modell and refers to the model with the URL https://www.
ebi.ac.uk/biomodels/model/download/BIOMDOOOO000140.27filename=BIOMDOOOOOOO140_url.xml.

The simulation description specifies one simulation simulationl, which is a uniform timecourse simula-
tion that simulates the model for 41 hours. taskl then applies this simulation to the model.

As output this simulation description collects four parameters: Total NFkBn, Total_IkBbeta, Total_IkBeps
and Total_TkBalpha. These variables are plotted against the simulation time as shown in Figure A.19 and
A.20. This document can be found at https://sed-ml.org/examples/L1V3/L1V3_ikappab/ikappab.
xml, and an OMEX version at https://sed-ml.org/examples/L1V3/L1V3_ikappab.omex.

plotl (BM140 Total_NFkBn)
—— Total_NFkBn (Total_NFkBn)
—— Total_IkBbeta (Total_IkBbeta)
0.5 —— Total_lkBalpha (Total_lkBalpha)

—— Total_lkBeps (Total_IkBeps)

0.3

0.1
beerororo—m——

0 500 1000 1500 2000 2500

Total_NFkBn Total_IkBbeta Total_IkBeps Total_lkBalpha 0.0

0 500 1000 1500 2000 2500
time (time)

Figure A.19: The simulation result gained
from the simulation description given in Figure A.20: Simulation with tellurium

Listing A.11. Simulation with SED-ML [6].
web tools [2].

1 <?xml version="1.0" encoding="utf-8"?>

2 <sedML xmlns="http://sed-ml.org/sed-ml/levell/version3" level="1" version="3">
3 <listOfSimulations>

4 <uniformTimeCourse id="simulationl"

5 initialTime="0" outputStartTime="0" outputEndTime="2500"

6 numberOfPoints="1000" >

102

https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000140.2?filename=BIOMD0000000140_url.xml
https://www.ebi.ac.uk/biomodels/model/download/BIOMD0000000140.2?filename=BIOMD0000000140_url.xml
https://sed-ml.org/examples/L1V3/L1V3_ikappab/ikappab.xml
https://sed-ml.org/examples/L1V3/L1V3_ikappab/ikappab.xml
https://sed-ml.org/examples/L1V3/L1V3_ikappab.omex

<algorithm kisaoID="KISAO:0000019"/>
</uniformTimeCourse>
</listOfSimulations>
<listOfModels>

<model id="modell" language="urn:sedml:language:sbml" source="https://www.ebi.ac.uk/biomodels/model/

download/BIOMDOOOOOOO01407?filename=BIOMDOOOOOOO140_url.xml" />
</1listO0fModels>
<listOfTasks>
<task id="taskl" modelReference="modell"
simulationReference="simulationl"/>
</listO0fTasks>
<listOfDataGenerators>
<dataGenerator id="time" name="time">
<listOfVariables>
<variable id="timel" taskReference="taskl" symbol="urn:sedml:symbol:time"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci>timel</ci>
</math>
</dataGenerator>
<dataGenerator id="Total_NFkBn" name="Total_NFkBn">
<listOfVariables>
<variable id="Total_NFkBnl" taskReference="taskl"
target="/sbml:sbml/sbml:model/sbml:1listOfParameters/sbml:parameter[@id="Total _NFkBn’]"/>
</listOfVariables>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<ci>Total _NFkBnl</ci>
</math>
</dataGenerator>
<dataGenerator id="Total_IkBbeta" name="Total_IkBbeta">
<listOfVariables>
<variable id="Total_IkBbetal" taskReference="taskl"

target="/sbml:sbml/sbml:model/sbml:1listOfParameters/sbml:parameter[@id="Total_IkBbeta’]" />

</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>Total_IkBbetal</ci>
</math>
</dataGenerator>
<dataGenerator id="Total_IkBeps" name="Total_IkBeps">
<listOfVariables>
<variable id="Total_IkBepsl" taskReference="taskl"

target="/sbml:sbml/sbml:model/sbml:listOfParameters/sbml:parameter[@id="Total_IkBeps’]" />

</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>Total_IkBepsl</ci>
</math>
</dataGenerator>
<dataGenerator id="Total_IkBalpha" name="Total_IkBalpha">
<listOfVariables>
<variable id="Total_IkBalphal" taskReference="taskl"

target="/sbml:sbml/sbml:model/sbml:1listOfParameters/sbml:parameter[@id="Total_IkBalpha’]" />

</listOfVariables>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<ci>Total_IkBalphal</ci>
</math>
</dataGenerator>
</listOfDataGenerators>
<listO0fOutputs>
<plot2D id="plotl" name="BM140 Total _NFkBn">
<listOfCurves>
<curve id="cl" logX="false" logY="false" xDataReference="time"
yDataReference="Total _NFkBn" />
<curve id="c2" logX="false" logY="false" xDataReference="time
yDataReference="Total_IkBbeta" />
<curve id="c3" logX="false" logY="false" xDataReference="time"
yDataReference="Total_IkBeps" />
<curve id="c4" logX="false" logY="false" xDataReference="time
yDataReference="Total_IkBalpha" />
</1listO0fCurves>
</plot2D>
</1listOfOutputs>
</sedML>

Listing A.11: [kappaB-NF-kappaB signaling Model Simulation Description in SED-ML

103

B.1

B.1.1

B. Validation

Validation of SED-ML documents

Validation and consistency rules

This section summarizes all the conditions that must (or in some cases, at least should) be true of a
SED-ML Level 1 Version 4 model that uses the SED-ML. We use the same conventions as are used in
the SED-ML Level 1 Version 4 Core specification document. In particular, there are different degrees
of rule strictness. Formally, the differences are expressed in the statement of a rule: either a rule states
that a condition must be true, or a rule states that it should be true. Rules of the former kind are
strict SED-ML validation rules—a model encoded in SED-ML must conform to all of them in order to
be considered valid. Rules of the latter kind are consistency rules. To help highlight these differences,
we use the following three symbols next to the rule numbers:

W A checked box indicates a requirement for SED-ML conformance. If a model does not follow this
rule, it does not conform to the SED-ML specification. (Mnemonic intention behind the choice of
symbol: “This must be checked.”)

A triangle indicates a recommendation for model consistency. If a model does not follow this rule,
it is not considered strictly invalid as far as the SED-ML specification is concerned; however, it
indicates that the model contains a physical or conceptual inconsistency. (Mnemonic intention
behind the choice of symbol: “This is a cause for warning.”)

% A star indicates a strong recommendation for good modeling practice. This rule is not strictly a
matter of SED-ML encoding, but the recommendation comes from logical reasoning. As in the
previous case, if a model does not follow this rule, it is not strictly considered an invalid SED-ML
encoding. (Mnemonic intention behind the choice of symbol: “You're a star if you heed this.”)

The validation rules listed in the following subsections are all stated or implied in the rest of this
specification document. They are enumerated here for convenience. Unless explicitly stated, all validation
rules concern objects and attributes specifically defined in SED-ML.

For convenience and brevity, we use the shorthand “x” to stand for an attribute or element name x
in the namespace for SED-ML, using the namespace prefix sedml. In reality, the prefix string may be
different from the literal “sedml” used here (and indeed, it can be any valid XML namespace prefix
that the modeler or software chooses). We use “x” because it is shorter than to write a full explanation
everywhere we refer to an attribute or element in the SED-ML namespace.

General rules about this package

10101 To conform to the SED-ML specification for SED-ML Level 1 Version 4, a SED-ML doc-
ument must declare “http://sed-ml.org/sed-ml/levell/versiond4” as the XMLNames-
pace to use for elements of this package. (Reference: SED-ML Level 1 Version 4 Section
2.2.1.1.)

10102 4 Wherever they appear in a SED-ML document, elements and attributes from the SED-
ML must use the “http://sed-ml.org/sed-ml/levell/versiond4” namespace, declaring
so either explicitly or implicitly. (Reference: SED-ML Level 1 Version 4 Section 2.2.1.1.)

104

Rules for Math objects

10201 4 Wherever MathML content appears in an SBML document, the MathML content must
be placed within a math element, and that math element must be either explicitly or im-
plicitly declared to be in the XML namespace “http://www.w3.0rg/1998/Math/MathML”.
(Reference: SED-ML Level 1 Version 4, Section 3.1.)

10202 4 The following is a list of the only MathML 2.0 elements permitted in SED-ML Level 1
Version 4: abs, and, annotation, annotation-xml, apply, arccosh, arccos, arccoth,
arccot, arccsch, arccsc, arcsech, arcsec, arcsinh, arcsin, arctanh, arctan, ceiling,
ci, cn, cosh, cos, coth, cot, csch, csc, csymbol, degree, divide, eq, exponentiale, exp,
factorial, false, floor, geq, gt, implies, infinity, leq, 1ln, logbase, log, 1t, max,
min, minus, neq, notanumber, not, or, otherwise, piecewise, piece, pi, plus, power,
quotient, rem, root, sech, sec, semantics, sep, sinh, sin, tanh, tan, times, true, and
xor. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10203 J In the SED-ML subset of MathML 2.0, the MathML attribute encoding is only permitted
on csymbol, annotation and annotation-xml. No other MathML elements may have an
encoding attribute. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10204 U In the SED-ML subset of MathML 2.0, the MathML attribute definitionURL is only
permitted on ci, csymbol and semantics. No other MathML elements may have a
definitionURL attribute. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10205 J In SED-ML, the only values permitted for the attribute definitionURL on a csymbol are
“http://sed-ml.org/#min”, “http://sed-ml.org/#max”, “http://sed-ml.org/#sum”,
“http://sed-ml.org/#product”, “http://sed-ml.org/functions/#uniform”,
“http://sed-ml.org/functions/#normal”, “http://sed-ml.org/functions/#lognormal”,
“http://sed-ml.org/functions/#gamma”, and “http://sed-ml.org/functions/#poisson”.
(Reference: SED-ML Level 1 Version 4, Section 3.1.)

10206 In the SBML subset of MathML 2.0, the MathML attribute type is only permitted on
the cn construct. No other MathML elements may have a type attribute. (Reference:
SED-ML Level 1 Version 4, Section 3.1.)

10207 & The only permitted values for the attribute type on MathML cn elements are “e-notation”,
“real”, “integer”, and “rational”. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10214 U A MathML ci element may not be the first element within a MathML apply element.
(Reference: SED-ML Level 1 Version 4, Section 3.1.)

10215 W If a MathML ci element is not the first element within a MathML apply, then the ci
element’s value may only be chosen from the following set of identifiers: the identifiers of
Variable and Parameter objects defined in the enclosing ComputeChange, DataGenerator,
or FunctionalRange object, and, if the parent of the Math is a SetValue, the value of that
SetValue’s range attribute. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10218 U A MathML operator must be supplied the number of arguments appropriate for that op-
erator. (Reference: SED-ML Level 1 Version 4, Section 3.1.)

10219 Avoid using the following values for the attribute definitionURL on a csymbol, as they
have been superceded by the term attribute of a Variable: “http://sed-ml.org/#min”,
“http://sed-ml.org/#max”, “http://sed-ml.org/#sum”, and “http://sed-ml.org/#product”.
(Reference: SED-ML Level 1 Version 4, Section 3.1.)

General rules about identifiers

10301 I The value of the attribute id on every SED-ML object must be unique across the set of
all id attribute values of all objects in a SED-ML document. (Reference: SED-ML Level 1
Version 4, Section 2.1.2.)

10302 W The value of a id must conform to the syntax of the SedML data type SId (Reference:
SED-ML Level 1 Version 4, Section 2.1.2.)

10303 W The value of a metaid must conform to the syntax of the XML Type ID (Reference: SED-
ML Level 1 Version 4, Section 2.1.2.)

105

Rules for the SED-ML Document object
20201 W A SED-ML Document object may have the optional SED-ML Level 1 attributes id, name,

20202

20203

20204

20205

20206

20207

20208

20209

20210

20211

20212

20213

20214

20215

20216

20217

20218

v

and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SED-ML Document object may have the optional SED-ML Level 1 subobjects for notes
and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SED-ML Document object must have the required attributes level and version. (Ref-
erence: SED-ML Level 1 Version 4, Section 2.2.1.)

A SED-ML Document object may contain one and only one instance of each of the ListOf-
DataDescriptions, ListOfModels, ListOfSimulations, ListOfTasks, ListOfDataGenerators,
ListOfOutputs, ListOfStyles and ListOfAlgorithmParameters elements. (Reference: SED-
ML Level 1 Version 4, Section 2.2.1.)

The attribute level on a SED-ML Document must have a positive value of data type
integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.)

The attribute version on a SED-ML Document must have a positive value of data type
integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.)

Apart from the general notes and annotations subobjects permitted on all SED-ML ob-
jects, a ListOfDataDescriptions container object may only contain DataDescription objects.
(Reference: SED-ML Level 1 Version 4, Section 2.2.1.4.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfModels container object may only contain Model objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.1.5.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfSimulations container object may only contain Simulation objects. (Reference:
SED-ML Level 1 Version 4, Section 2.2.1.6.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfTasks container object may only contain AbstractTask objects. (Reference: SED-
ML Level 1 Version 4, Section 2.2.1.7.)

Apart from the general notes and annotations subobjects permitted on all SED-ML ob-
jects, a ListOfDataGenerators container object may only contain DataGenerator objects.
(Reference: SED-ML Level 1 Version 4, Section 2.2.1.8.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfOutputs container object may only contain Ouiput objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.1.9.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfStyles container object may only contain Style objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.1.10.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfAlgorithmParameters container object may only contain AlgorithmParameter ob-
jects. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

A ListOfDataDescriptions object may have the optional SED-ML Level 1 attributes id,
name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.4.)

A ListOfModels object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.5.)

A ListOfSimulations object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.6.)

A ListOfTasks object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.7.)

106

20219 U

20220 U

20221 U

20222 U

20250 *

A ListOfDataGenerators object may have the optional SED-ML Level 1 attributes id,
name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.8.)

A ListOfOutputs object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.9.)

A ListOfStyles object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.1.10.)

A ListOfAlgorithmParameters object may have the optional SED-ML Level 1 attributes
id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

Every SED-ML Document should contain at least one Output. (Reference: SED-ML
Level 1 Version 4, Section 2.2.1)

Rules for Model objects

20301 U

20302 U

20303 ¢

20304 U

20305 U

20306 U

20307 U

20308 Ul

20350

20351 U

20352 U

20353 U

20354 %

20355 U

20356 I

20357 U

A Model object may have the required SED-ML Level 1 attribute id and the optional
attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Model object may have the optional SED-ML Level 1 subobjects for notes and annota-
tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Model object must have the required attributes language, source and id. (Reference:
SED-ML Level 1 Version 4, Section 2.2.4.)

A Model object may contain one and only one instance of the ListOfChanges element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.4.)

The attribute language on a Model must have a value of data type URN (Reference: SED-
ML Level 1 Version 4, Section 2.2.4)

The attribute source on a Model must have a value of data type anyURI (Reference: SED-
ML Level 1 Version 4, Section 2.2.4)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfChanges container object may only contain Change objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.4.)

A ListOfChanges object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.4.)

There must not be circular dependencies in model resolution. The source attribute of
a Model may not directly or indirectly reference itself. (Reference: SED-ML Level 1
Version 4, Section 2.2.4)

There must not be circular cross-dependencies in model change resolution. The target and
source attributes of a ComputeChange may not correspond to the target and source of
a different ComputeChange in a different Model. (Reference: SED-ML Level 1 Version 4,
Section 2.2.4)

The model pointed to by the source attribute must exist. (Reference: SED-ML Level 1
Version 4, Section 2.2.4)

The model pointed to by the source attribute must be encoded in the language defined by
the language attribute. (Reference: SED-ML Level 1 Version 4, Section 2.2.4)

Avoid using URNs for the source attribute of a Model, as these have become increasingly
harder to resolve. (Reference: SED-ML Level 1 Version 4, Section 2.2.4)

A Model may only contain an AddXML child if its language attribute describes an XML-
based language. (Reference: SED-ML Level 1 Version 4, Section 2.2.4)

A Model may only contain a RemoveXML child if its language attribute describes an
XML-based language. (Reference: SED-ML Level 1 Version 4, Section 2.2.4)

A Model may only contain a ChangeXML child if its language attribute describes an
XML-based language. (Reference: SED-ML Level 1 Version 4, Section 2.2.4)

107

Rules for Change objects

20401 W A Change object may have the optional SED-ML Level 1 attributes id, name, and metaid.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20402 W A Change object may have the optional SED-ML Level 1 subobjects for notes and anno-

tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20403 U A Change object must have the required attribute target. (Reference: SED-ML Level 1

Version 4, Section 2.2.5.)

20404 U The attribute target on a Change must have a value of data type string. (Reference:

SED-ML Level 1 Version 4, Section 2.2.5.)

Rules for AddXML objects

20501 1 An AddXML object may have the optional SED-ML Level 1 attributes id, name, and

20502

20503

20550

20551

20552

20553

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AddXML object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AddXML object must contain one and only one instance of the XMLNode element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.5.2.)

The target attribute of an AddXML object must point to a valid target in the Model
source. (Reference: SED-ML Level 1 Version 4, Section 2.2.5)

The target attribute of an AddXML object be a valid XPath when the Model language
attribute describes an XML-based language. (Reference: SED-ML Level 1 Version 4,
Section 2.2.5)

The XML child of an AddXML object must be a valid XML element or list of XML
elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.2)

The XML child of an AddXML object must be in a namespace defined by the source
attribute of the parent Model object, or explicitly define its own namespace understood by
the language of the target model. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.2)

Rules for ChangeAttribute objects

20601 1 A ChangeAttribute object may have the optional SED-ML Level 1 attributes id, name,

20602

20603

20604

20650

20651

v

v

v

v

v

and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ChangeAttribute object may have the optional SED-ML Level 1 subobjects for notes
and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ChangeAttribute object must have the required attribute newValue. (Reference: SED-
ML Level 1 Version 4, Section 2.2.5.5.)

The attribute newValue on a ChangeAttribute must have a value of data type string.
(Reference: SED-ML Level 1 Version 4, Section 2.2.5.5.)

The target attribute of a ChangeAttribute object must point to a valid target in the Model
source. (Reference: SED-ML Level 1 Version 4, Section 2.2.5)

The target attribute of a ChangeAttribute object be a valid XPath when the Model
language attribute describes an XML-based language. (Reference: SED-ML Level 1 Ver-
sion 4, Section 2.2.5)

Rules for Variable objects

20701 W A Variable object may have the required SED-ML Level 1 attribute id and the optional

attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

108

20702

20703

20704

20705

20706

20707

20708

20709

20710

20711

20712

20713

20714

20750

20751

20752

20753

20754

A Variable object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Variable object may have the optional attributes symbol, target, taskReference, model-
Reference, term, symbol2, target2 and dimensionTerm. (Reference: SED-ML Level 1
Version 4, Section 2.1.6.)

A Variable object may contain one and only one instance of the ListOfAppliedDimensions
element. (Reference: SED-ML Level 1 Version 4, Section 2.1.6.)

The attribute symbol on a Variable must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.1.6.)

The attribute target on a Variable must have a value of data type TargetType (Reference:
SED-ML Level 1 Version 4, Section 2.1.6)

The value of the attribute taskReference of a Variable object must be the identifier of
an existing AbstractTask object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.1.6.)

The value of the attribute modelReference of a Variable object must be the identifier of
an existing Model object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.1.6.)

The attribute term on a Variable must have a value of data type anyURI (Reference: SED-
ML Level 1 Version 4, Section 2.1.6)

The attribute symbol2 on a Variable must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.1.6.)

The attribute target2 on a Variable must have a value of data type TargetType (Reference:
SED-ML Level 1 Version 4, Section 2.1.6)

The attribute dimensionTerm on a Variable must have a value of data type string. (Ref-
erence: SED-ML Level 1 Version 4, Section 2.1.6.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfAppliedDimensions container object may only contain AppliedDimension objects.
(Reference: SED-ML Level 1 Version 4, Section 2.1.7.)

A ListOfAppliedDimensions object may have the optional SED-ML Level 1 attributes id,
name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.7.)

Every Variable with a defined dimensionTerm attribute must have exactly one ListOfAp-
pliedDimensions child containing at least one child AppliedDimension object. (Reference:
SED-ML Level 1 Version 4, Section 2.1.6)

Every Variable with a defined target2 or symbol2 attribute must also define the term
attribute. (Reference: SED-ML Level 1 Version 4, Section 2.1.6)

The target, symbol, term, target2 and symbol2 attributes of a Variable must collectively
define a single mathematical concept. (Reference: SED-ML Level 1 Version 4, Section
2.1.6)

When the target attribute of a Variable is an XPath, it must point to a single model
element or attribute. (Reference: SED-ML Level 1 Version 4, Section 2.1.6)

If the target of a Variable child of a DataGenerator points to a DataSource, neither the
Variable’s taskReference nor modelRefernce may be set. (Reference: SED-ML Level 1
Version 4, Section 2.1.6)

109

Rules for Parameter objects

20801 W A Parameter object may have the required SED-ML Level 1 attribute id and the optional
attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20802 I A Parameter object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20803 @ A Parameter object must have the required attributes value and id. (Reference: SED-ML
Level 1 Version 4, Section 2.1.5.)

20804 I The attribute value on a Parameter must have a value of data type double. (Reference:
SED-ML Level 1 Version 4, Section 2.1.5.)

Rules for Simulation objects

20901 1 A Simulation object may have the required SED-ML Level 1 attribute id and the optional
attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20902 W A Simulation object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

20903 W A Simulation object must contain one and only one instance of the Algorithm element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.6.)

Rules for UniformTimeCourse objects

21001 1 An UniformTimeCourse object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

21002 @ An UniformTimeCourse object may have the optional SED-ML Level 1 subobjects for
notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

21003 1 An UniformTimeCourse object must have the required attributes initialTime, output-
StartTime and outputEndTime, and may have the optional attributes numberOfPoints and
numberOfSteps. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21004 1 The attribute initialTime on an UniformTimeCourse must have a value of data type
double. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21005 1 The attribute outputStartTime on an UniformTimeCourse must have a value of data type
double. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21006 W The attribute outputEndTime on an UniformTimeCourse must have a value of data type
double. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21007 4 The attribute numberOfPoints on an UniformTimeCourse must have a positive value of
data type integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21008 /I The attribute numberOfSteps on an UniformTimeCourse must have a positive value of
data type integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1.)

21050 Avoid use of the numberOfPoints attribute of a UniformTimeCourse in favor of the numberOfSteps
attribute. ”Number of Steps” accurately reflects the meaning of the attribute. (Reference:
SED-ML Level 1 Version 4, Section 2.2.6.1)

21051 W The value of the outputStartTime attribute of a UniformTimeCourse must be equal to
or greater than the value of the initialTime attribute. (Reference: SED-ML Level 1
Version 4, Section 2.2.6.1)

21052 W The value of the endTime attribute of a UniformTimeCourse must be equal to or greater
than the value of the outputStartTime attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.6.1)

110

21053 % The value of the numberOfPoints attribute of a UniformTimeCourse should typically be

21054 U

evenly divisible by five. When this is not the case, it often indicates that the modeler is
unaware that the definition of the attribute is actually 'the number of points not including
the initial state’. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1)

Only one of the attributes numberOfPoints or numberOfSteps may be defined on a Uni-
formTimeCourse. (Reference: SED-ML Level 1 Version 4, Section 2.2.6.1)

Rules for Algorithm objects

21101 U

21102 U

21103 U

21104 U

21105 U

21106 U

21107 U

21150 U

An Algorithm object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An Algorithm object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An Algorithm object must have the required attribute kisaoID. (Reference: SED-ML
Level 1 Version 4, Section 2.2.7.1.)

An Algorithm object may contain one and only one instance of the ListOfAlgorithmPara-
meters element. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

The attribute kisaoID on an Algorithm must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.2.7.1.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfAlgorithmParameters container object may only contain AlgorithmParameter ob-
jects. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

A ListOfAlgorithmParameters object may have the optional SED-ML Level 1 attributes
id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

The value of the kisaoID attribute of an Algorithm must be the ID of an algorithm in the
KiSAO ontology. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1)

Rules for AbstractTask objects

21201 U4

21202 U

21203 U

An AbstractTask object may have the required SED-ML Level 1 attribute id and the op-
tional attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AbstractTask object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AbstractTask object must have the required attribute id. (Reference: SED-ML Level 1
Version 4, Section 2.2.8.1.)

21250 % Every AbstractTask should contribute to at least one Output. (Reference: SED-ML Level 1

Version 4, Section 2.2.8)

Rules for Task objects

21301 U

21302 U

21303 U

21304 U

21305 U

A Task object may have the required SED-ML Level 1 attribute id and the optional
attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Task object may have the optional SED-ML Level 1 subobjects for notes and annotations.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Task object must have the required attributes modelReference and simulationReference.
(Reference: SED-ML Level 1 Version 4, Section 2.2.8.1.)

The value of the attribute modelReference of a Task object must be the identifier of an
existing Model object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.2.8.1.)

The value of the attribute simulationReference of a Task object must be the identifier
of an existing Simulation object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.8.1.)

111

Rules for DataGenerator objects

21401

21402

21403

21404

21405

21406

21407

21408

¥ A DataGenerator object may have the required SED-ML Level 1 attribute id and the op-
tional attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

7 A DataGenerator object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

v A DataGenerator object must have the required attribute id. (Reference: SED-ML Level 1
Version 4, Section 2.2.11.)

W A DataGenerator object may contain one and only one instance of each of the ListOfVari-
ables; ListOfParameters and ASTNode elements. (Reference: SED-ML Level 1 Version 4,
Section 2.2.11.)

U Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfVariables container object may only contain Variable objects. (Reference: SED-ML
Level 1 Version 4, Section 2.1.8.)

U Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfParameters container object may only contain Parameter objects. (Reference:
SED-ML Level 1 Version 4, Section 2.1.8.)

U A ListOfVariables object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

U A ListOfParameters object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

Rules for Output objects

21501

21502

21550

21551

21552

21553

21554

U An Output object may have the optional SED-ML Level 1 attributes id, name, and metaid.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

W An Output object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

% Every DataGenerator should contribute to at least one Output. (Reference: SED-ML
Level 1 Version 4, Section 2.2.11)

% The shape of the output of every Variable child of the same DataGenerator should either be
scalar or be consistent with its Variable siblings. (Reference: SED-ML Level 1 Version 4,
Section 2.2.11)

U If the target of a Variable child of a DataGenerator does not point to a DataSource, the
Variable’s taskReference must be set. (Reference: SED-ML Level 1 Version 4, Section
2.1.6)

U If the taskReference of a Variable child of a DataGenerator is set and references an
AbstractTask that references multiple models, the modelReference of the Variable must
also be set. (Reference: SED-ML Level 1 Version 4, Section 2.1.6)

U If the taskReference of a Variable child of a DataGenerator is set, the modelReference of
the Variable, if also set, must reference a Model modified by the referenced AbstractTask.
(Reference: SED-ML Level 1 Version 4, Section 2.1.6)

Rules for Plot objects

21601

21602

21603

W A Plot object may have the optional SED-ML Level 1 attributes id, name, and metaid.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

¥ A Plot object may have the optional SED-ML Level 1 subobjects for notes and annotations.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

7 A Plot object may have the optional attributes legend, height and width. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.1.)

112

21604

21605

21606

21607

v

vl

v

v

A Plot object may contain one and only one instance of each of the Axis and Axis elements.
(Reference: SED-ML Level 1 Version 4, Section 2.2.12.1.)

The attribute legend on a Plot must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.1.)

The attribute height on a Plot must have a non-negative value of data type double.
(Reference: SED-ML Level 1 Version 4, Section 2.2.12.1.)

The attribute width on a Plot must have a non-negative value of data type double. (Ref-
erence: SED-ML Level 1 Version 4, Section 2.2.12.1.)

Rules for Plot2D objects

21701 @ A Plot2D object may have the optional SED-ML Level 1 attributes id, name, and metaid.

21702

21703

21704

21705

21750

v

v

v

v

*

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Plot2D object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Plot2D object may contain one and only one instance of each of the ListOfCurves and
Axis elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.2.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfCurves container object may only contain AbstractCurve objects. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.2.)

A ListOfCurves object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.2.)

The shape of the data referenced by every AbstractCurve child of a single Plot2D object
should be consistent. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.2)

Rules for Plot3D objects

21801 @ A Plot3D object may have the optional SED-ML Level 1 attributes id, name, and metaid.

21802

21803

21804

21805

21850

v

v

v

v

*

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Plot3D object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Plot3D object may contain one and only one instance of each of the ListOfSurfaces and
Axis elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.3.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfSurfaces container object may only contain Surface objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.12.3.)

A ListOfSurfaces object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.3.)

The shape of the data referenced by every Surface child of a single Plot3D object should
be consistent. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.3)

Rules for AbstractCurve objects

21901 U An AbstractCurve object may have the optional SED-ML Level 1 attributes id, name, and

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

21902 I An AbstractCurve object may have the optional SED-ML Level 1 subobjects for notes and

annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

21903 W An AbstractCurve object must have the required attribute xDataReference, and may have

the optional attributes logX, order, style and yAxis. (Reference: SED-ML Level 1 Ver-
sion 4, Section 2.2.12.6.)

113

21904

21905

21906

21907

21908

21950

The value of the attribute xDataReference of an AbstractCurve object must be the iden-
tifier of an existing DataReference object defined in the document. (Reference: SED-ML
Level 1 Version 4, Section 2.2.12.6.)

The attribute logX on an AbstractCurve must have a value of data type boolean. (Refer-
ence: SED-ML Level 1 Version 4, Section 2.2.12.6.)

The attribute order on an AbstractCurve must have a value of data type integer. (Ref-
erence: SED-ML Level 1 Version 4, Section 2.2.12.6.)

The value of the attribute style of an AbstractCurve object must be the identifier of an
existing Style object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6.)

The attribute yAxis on an AbstractCurve must have a value of data type string. (Refer-
ence: SED-ML Level 1 Version 4, Section 2.2.12.6.)

No logX attribute of any AbstractCurve should be set. Instead, the type attribute of
the corresponding Axis should be used. (Reference: SED-ML Level 1 Version 4, Section
2.2.12.5)

Rules for Curve objects

22001 @ A Curve object may have the optional SED-ML Level 1 attributes id, name, and metaid.

22002

22003

22004

22005

22006

22007

22008

22009

22010

22050

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Curve object may have the optional SED-ML Level 1 subobjects for notes and annota-
tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Curve object must have the required attributes yDataReference and type, and may have
the optional attributes logY, xErrorUpper, xErrorLower, yErrorUpper and yErrorLower.
(Reference: SED-ML Level 1 Version 4, Section 2.2.12.6.)

The value of the attribute yDataReference of a Curve object must be the identifier of
an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.6.)

The value of the attribute type of a Curve object must conform to the syntax of SED-ML
data type CurveType and may only take on the allowed values of CurveType defined in
SED-ML; that is, the value must be one of the following: “points”, “bar”, “barStacked”,
“horizontalBar” or “horizontalBarStacked”. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6.)

The attribute logY on a Curve must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.6.)

The value of the attribute xErrorUpper of a Curve object must be the identifier of an
existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.6.)

The value of the attribute xErrorLower of a Curve object must be the identifier of an
existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.6.)

The value of the attribute yErrorUpper of a Curve object must be the identifier of an
existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.6.)

The value of the attribute yErrorLower of a Curve object must be the identifier of an
existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.6.)

No logY attribute of any Curve should be set. Instead, the type attribute of the corre-
sponding Axis should be used. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.6)

114

22051

22052

22053

22054

v

v

v

v

If defined, the xErrorUpper attribute must reference data with the same dimensionality as
that referenced by the xDataReference attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6)

If defined, the xErrorLower attribute must reference data with the same dimensionality as
that referenced by the xDataReference attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6)

If defined, the yErrorUpper attribute must reference data with the same dimensionality as
that referenced by the yDataReference attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6)

If defined, the yErrorLower attribute must reference data with the same dimensionality as
that referenced by the yDataReference attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.12.6)

Rules for Surface objects

22101

22102

22103

22104

22105

22106

22107

22108

22109

22110

22111

22112

22150

v

v

A Surface object may have the optional SED-ML Level 1 attributes id, name, and metaid.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Surface object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Surface object must have the required attributes xDataReference, yDataReference,
zDataReference and type, and may have the optional attributes style, logX, logY, logZ
and order. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.8.)

The value of the attribute xDataReference of a Surface object must be the identifier of
an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.8.)

The value of the attribute yDataReference of a Surface object must be the identifier of
an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.8.)

The value of the attribute zDataReference of a Surface object must be the identifier of
an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.8.)

The value of the attribute type of a Surface object must conform to the syntax of SED-
ML data type SurfaceType and may only take on the allowed values of SurfaceType
defined in SED-ML; that is, the value must be one of the following: “parametricCurve”,
“surfaceMesh”, “surfaceContour”, “contour”, “heatMap”’, “stackedCurves” or “bar”.
(Reference: SED-ML Level 1 Version 4, Section 2.2.12.8.)

The value of the attribute style of a Surface object must be the identifier of an existing
Style object defined in the document. (Reference: SED-ML Level 1 Version 4, Section
2.2.12.8.)

The attribute logX on a Surface must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.8.)

The attribute logY on a Surface must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.8.)

The attribute logZ on a Surface must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.8.)

The attribute order on a Surface must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.8.)

No logX, logY, or logZ attribute of any Surface should be set. Instead, the type attribute
of the corresponding Axis should be used. (Reference: SED-ML Level 1 Version 4, Section
2.2.12.5)

115

Rules for DataSet objects

22201 1 A DataSet object may have the optional SED-ML Level 1 attributes id, name, and metaid.

22202

22203

22204

22205

22250

v

v

v

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataSet object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataSet object must have the required attributes label and dataReference. (Reference:
SED-ML Level 1 Version 4, Section 2.2.13.1.)

The attribute label on a DataSet must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.2.13.1.)

The value of the attribute dataReference of a DataSet object must be the identifier of
an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.13.1.)

The label attributes of the DataSet children of a single Report must be unique. (Reference:
SED-ML Level 1 Version 4, Section 2.2.13.1)

Rules for Report objects

22301 W A Report object may have the optional SED-ML Level 1 attributes id, name, and metaid.

22302

22303

22304

22305

vl

v

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Report object may have the optional SED-ML Level 1 subobjects for notes and annota-
tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Report object may contain one and only one instance of the ListOfDataSets element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.13.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfDataSets container object may only contain DataSet objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.13.)

A ListOfDataSets object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.13.)

22350 % The shape of the output of every DataSet child of the same Report should be consistent.

(Reference: SED-ML Level 1 Version 4, Section 2.2.13)

Rules for AlgorithmParameter objects

22401 @ An AlgorithmParameter object may have the optional SED-ML Level 1 attributes id, name,

22402

22403

22404

22405

22406

22407

v

and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AlgorithmParameter object may have the optional SED-ML Level 1 subobjects for
notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AlgorithmParameter object must have the required attributes kisaoID and value.
(Reference: SED-ML Level 1 Version 4, Section 2.2.7.2.)

An AlgorithmParameter object may contain one and only one instance of the ListOfAlgo-
rithmParameters element. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.2.)

The attribute kisaoID on an AlgorithmParameter must have a value of data type string.
(Reference: SED-ML Level 1 Version 4, Section 2.2.7.2.)

The attribute value on an AlgorithmParameter must have a value of data type string.
(Reference: SED-ML Level 1 Version 4, Section 2.2.7.2.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfAlgorithmParameters container object may only contain AlgorithmParameter ob-
jects. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

116

22408 1 A ListOfAlgorithmParameters object may have the optional SED-ML Level 1 attributes

id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.1.)

22450 I The value of the kisaoID attribute of an AlgorithmParameter must be the ID of an algo-

rithm parameter in the KiSAO ontology that is associated with the kisaoID of its parent
Algorithm. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.2)

22451 I The value of the every kisaoID attribute of the AlgorithmParameter children of a single

Algorithm must be unique. (Reference: SED-ML Level 1 Version 4, Section 2.2.7.2)

Rules for Range objects

22501 W A Range object may have the optional SED-ML Level 1 attributes id, name, and metaid.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

22502 I A Range object may have the optional SED-ML Level 1 subobjects for notes and annota-

tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

Rules for Change XML objects

22601 W A ChangeXML object may have the optional SED-ML Level 1 attributes id, name, and

22602

22603

22650

22651

22652

22653

v

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ChangeXML object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ChangeXML object may contain one and only one instance of the XMLNode element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.5.3.)

The target attribute of a ChangeXMIL object must point to a valid target in the Model
source. (Reference: SED-ML Level 1 Version 4, Section 2.2.5)

The target attribute of a ChangeXML object be a valid XPath when the Model 1language
attribute describes an XML-based language. (Reference: SED-ML Level 1 Version 4,
Section 2.2.5)

The XML child of an ChangeXML object must be a valid XML element or list of XML
elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.3)

The XML child of an ChangeXML object must be in a namespace defined by the source
attribute of the parent Model object, or explicitly define its own namespace understood by
the language of the target model. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.3)

Rules for Remove XML objects

22701 W A RemoveXML object may have the optional SED-ML Level 1 attributes id, name, and

22702

22750

22751

22752

22753

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A RemoveXML object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

The target attribute of a RemoveXML object must point to a valid target in the Model
source. (Reference: SED-ML Level 1 Version 4, Section 2.2.5)

The target attribute of a RemoveXML object be a valid XPath when the Model 1anguage
attribute describes an XML-based language. (Reference: SED-ML Level 1 Version 4,
Section 2.2.5)

The XML child of an RemoveXML object must be a valid XML element or list of XML
elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.4)

The XML child of an RemoveXML object must be in a namespace defined by the source
attribute of the parent Model object, or explicitly define its own namespace understood by
the language of the target model. (Reference: SED-ML Level 1 Version 4, Section 2.2.5.4)

117

Rules for SetValue objects

22801 W A SetValue object may have the optional SED-ML Level 1 attributes id, name, and metaid.

22802

22803

22804

22805

22806

22807

22808

22809

22810

22811

22812

22850

22851

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SetValue object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SetValue object must have the required attribute modelReference, and may have the
optional attributes range, symbol and target. (Reference: SED-ML Level 1 Version 4,
Section 2.2.9.2.)

A SetValue object may contain one and only one instance of each of the ASTNode, ListOf-
Variables and ListOfParameters elements. (Reference: SED-ML Level 1 Version 4, Section
2.2.9.2.)

The value of the attribute modelReference of a SetValue object must be the identifier of
an existing Model object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.2.9.2.)

The value of the range attribute of a SetValue must be the identifier of an existing Range
child of the parent RepeatedTask. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.2)

The attribute symbol on a SetValue must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.2.)

The attribute target on a SetValue must have a value of data type TargetType (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.2)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfVariables container object may only contain Variable objects. (Reference: SED-ML
Level 1 Version 4, Section 2.1.8.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfParameters container object may only contain Parameter objects. (Reference:
SED-ML Level 1 Version 4, Section 2.1.8.)

A ListOfVariables object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

A ListOfParameters object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

If the target of a Variable child of a SetValue does not point to a DataSource, the Variable’s
modelReference must be set. (Reference: SED-ML Level 1 Version 4, Section 2.1.6)

If the target of a Variable child of a SetValue does not point to a DataSource, the Vari-
able’s taskReference, if set, must reference the parent AbstractTusk. (Reference: SED-ML
Level 1 Version 4, Section 2.1.6)

Rules for UniformRange objects

22901 1 An UniformRange object may have the optional SED-ML Level 1 attributes id, name, and

22902

22903

22904

v

v

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An UniformRange object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An UniformRange object must have the required attributes start, end and type, and may
have the optional attributes numberOfPoints and numberOfSteps. (Reference: SED-ML
Level 1 Version 4, Section 2.2.9.3.1.)

The attribute start on an UniformRange must have a value of data type double. (Refer-
ence: SED-ML Level 1 Version 4, Section 2.2.9.3.1.)

118

22905

22906

22907

22908

22950

22951

22952

v

The attribute end on an UniformRange must have a value of data type double. (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.3.1.)

The attribute type on an UniformRange must have a value of data type string. (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.3.1.)

The attribute numberOfPoints on an UniformRange must have a positive value of data
type integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.1.)

The attribute number0OfSteps on an UniformRange must have a positive value of data type
integer. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.1.)

Avoid use of the number0OfPoints attribute of a UniformRange in favor of the numberOfSteps
attribute. ”Number of Steps” accurately reflects the meaning of the attribute. (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.3.1)

The value of the numberOfPoints attribute of a UniformRange should typically be evenly
divisible by five. When this is not the case, it often indicates that the modeler is unaware
that the definition of the attribute is actually ‘the number of points not including the initial
state’. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.1)

Only one of the attributes numberOfPoints or numberOfSteps may be defined on a Uni-
formRange. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.1)

Rules for VectorRange objects

23001

23002

23003

23004

v

v

v

v

A VectorRange object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A VectorRange object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A VectorRange object may have the optional attribute value. (Reference: SED-ML Level 1
Version 4, Section 2.2.9.3.2.)

The value of the attribute value of a VectorRange object must be an vector of values of
type double. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.2.)

Rules for FunctionalRange objects

23101 W A FunctionalRange object may have the optional SED-ML Level 1 attributes id, name, and

23102

23103

23104

23105

23106

23107

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FunctionalRange object may have the optional SED-ML Level 1 subobjects for notes
and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FunctionalRange object must have the required attribute range. (Reference: SED-ML
Level 1 Version 4, Section 2.2.9.3.4.)

A FunctionalRange object may contain one and only one instance of each of the ListOfVari-
ables, ListOfParameters and ASTNode elements. (Reference: SED-ML Level 1 Version 4,
Section 2.2.9.3.4.)

The value of the range attribute of a FunctionalRange must be the identifier of an existing
Range sibling of the FunctionalRange. (Reference: SED-ML Level 1 Version 4, Section
2.2.9.3.4)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfVariables container object may only contain Variable objects. (Reference: SED-ML
Level 1 Version 4, Section 2.1.8.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfParameters container object may only contain Parameter objects. (Reference:
SED-ML Level 1 Version 4, Section 2.1.8.)

119

23108

23109

23150

23151

v

v

v

v

A ListOfVariables object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

A ListOfParameters object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

There must not be circular dependencies in the calculatino of functional ranges. No Variable
child of a FunctionalRange may directly or indirectly reference the parent FunctionalRange.
(Reference: SED-ML Level 1 Version 4, Section 2.2.9.3.4)

The modelReference attribute of a Variable child of a FunctionalRange must be defined if
the target does not point to external data and the parent FunctionalRange is a child of an
AbstractTask that involves more than one Model. (Reference: SED-ML Level 1 Version 4,
Section 2.2.9.3.4)

Rules for SubTask objects

23201 W A SubTask object may have the optional SED-ML Level 1 attributes id, name, and metaid.

23202

23203

23204

23205

23206

23207

23208

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SubTask object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SubTask object must have the required attributes order and task. (Reference: SED-ML
Level 1 Version 4, Section 2.2.9.1.)

A SubTask object may contain one and only one instance of the ListOfChanges element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.9.1.)

The attribute order on a SubTask must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.9.1.)

The value of the attribute task of a SubTask object must be the identifier of an existing
AbstractTask object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.2.9.1.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfChanges container object may only contain SetValue objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.4.)

A ListOfChanges object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.4.)

Rules for OneStep objects

23301 W A OneStep object may have the optional SED-ML Level 1 attributes id, name, and metaid.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

23302 W A OneStep object may have the optional SED-ML Level 1 subobjects for notes and anno-

tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

23303 U A OneStep object must have the required attribute step. (Reference: SED-ML Level 1

Version 4, Section 2.2.6.2.)

23304 1 The attribute step on a OneStep must have a non-negative value of data type double.

(Reference: SED-ML Level 1 Version 4, Section 2.2.6.2.)

Rules for SteadyState objects

23401 1 A SteadyState object may have the optional SED-ML Level 1 attributes id, name, and

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

23402 W A SteadyState object may have the optional SED-ML Level 1 subobjects for notes and

annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

120

Rules for RepeatedTask objects

23501 W A RepeatedTask object may have the required SED-ML Level 1 attribute id and the op-

23502

23503

23504

23505

23506

23507

23508

23509

23510

23511

23512

23513

23550

23551

23552

23553

23554

v

tional attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A RepeatedTask object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A RepeatedTask object must have the required attributes range and resetModel, and may
have the optional attribute concatenate. (Reference: SED-ML Level 1 Version 4, Section
2.2.8.2.)

A RepeatedTask object may contain one and only one instance of each of the List OfRanges,
ListOfChanges and ListOfSubTasks elements. (Reference: SED-ML Level 1 Version 4,
Section 2.2.8.2.)

The value of the range of a RepeatedTask must be the identifier of an existing Range child
of that RepeatedTask. (Reference: SED-ML Level 1 Version 4, Section 2.2.9.3)

The attribute resetModel on a RepeatedTask must have a value of data type boolean.
(Reference: SED-ML Level 1 Version 4, Section 2.2.8.2.)

The attribute concatenate on a RepeatedTask must have a value of data type boolean.
(Reference: SED-ML Level 1 Version 4, Section 2.2.8.2.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfRanges container object may only contain Range objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.8.2.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfChanges container object may only contain SetValue objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.4.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfSubTasks container object may only contain SubTask objects. (Reference: SED-
ML Level 1 Version 4, Section 2.2.8.2.)

A ListOfRanges object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.8.2.)

A ListOfChanges object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.4.)

A ListOfSubTasks object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.8.2.)

There must not be circular dependencies in repeated tasks. The task attribute of a SubTask
may not directly or indirectly reference its parent RepeatedTask. (Reference: SED-ML
Level 1 Version 4, Section 2.2.8.2)

Every RepeatedTask must have exactly one ListOfRanges child containing at least one
child Range object. (Reference: SED-ML Level 1 Version 4, Section 2.2.8.2)

Every RepeatedTask must have exactly one ListOfSubTasks child containing at least one
child SubTask object. (Reference: SED-ML Level 1 Version 4, Section 2.2.8.2)

When a RepeatedTask has multiple Range children, they all must have at least as many
entries as the one referenced by the range attribute. (Reference: SED-ML Level 1 Version 4,
Section 2.2.8.2)

The shape of the output of every SubTask child of the same RepeatedTask should be
consistent. (Reference: SED-ML Level 1 Version 4, Section 2.2.8.2)

121

Rules for ComputeChange objects

23601 W A ComputeChange object may have the optional SED-ML Level 1 attributes id, name, and

23602

23603

23604

23605

23606

23607

23608

23609

23650

23651

23652

v

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ComputeChange object may have the optional SED-ML Level 1 subobjects for notes
and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ComputeChange object may have the optional attribute symbol. (Reference: SED-ML
Level 1 Version 4, Section 2.2.5.6.)

A ComputeChange object may contain one and only one instance of each of the ASTNode,
ListOfVariables and ListOfParameters elements. (Reference: SED-ML Level 1 Version 4,
Section 2.2.5.6.)

The attribute symbol on a ComputeChange must have a value of data type string. (Ref-
erence: SED-ML Level 1 Version 4, Section 2.2.5.6.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfVariables container object may only contain Variable objects. (Reference: SED-ML
Level 1 Version 4, Section 2.1.8.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfParameters container object may only contain Parameter objects. (Reference:
SED-ML Level 1 Version 4, Section 2.1.8.)

A ListOfVariables object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

A ListOfParameters object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.8.)

The target attribute of a ComputeChange object must be a valid XPath when the Model
language attribute describes an XML-based language. (Reference: SED-ML Level 1 Ver-
sion 4, Section 2.2.5)

The target attribute of a ComputeChange object be a valid XPath when the Model
language attribute describes an XML-based language. (Reference: SED-ML Level 1 Ver-
sion 4, Section 2.2.5)

The taskReference attribute of a Variable child of a ComputeChange object must not be
defined. (Reference: SED-ML Level 1 Version 4, Section 2.2.5)

Rules for DataDescription objects

23701 W A DataDescription object may have the required SED-ML Level 1 attribute id and the op-

23702

23703

23704

23705

23706

u

tional attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataDescription object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataDescription object must have the required attributes source and id, and may have
the optional attribute format. (Reference: SED-ML Level 1 Version 4, Section 2.2.2.)

A DataDescription object may contain one and only one instance of each of the Dimen-
sionDescription and ListOfDataSources elements. (Reference: SED-ML Level 1 Version 4,
Section 2.2.2.)

The attribute source on a DataDescription must have a value of data type anyURI (Ref-
erence: SED-ML Level 1 Version 4, Section 2.2.2)

The attribute format on a DataDescription must have a value of data type URN (Reference:
SED-ML Level 1 Version 4, Section 2.2.2)

122

23707 W Apart from the general notes and annotations subobjects permitted on all SED-ML objects,

a ListOfDataSources container object may only contain DataSource objects. (Reference:
SED-ML Level 1 Version 4, Section 2.2.2.)

23708 1 A ListOfDataSources object may have the optional SED-ML Level 1 attributes id, name,

and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.2.)

Rules for DataSource objects

23801 W A DataSource object may have the required SED-ML Level 1 attribute id and the optional

23802

23803

23804

23805

23806

23807

v

v

v

v

v

v

attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataSource object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataSource object must have the required attributes indexSet and id. (Reference:
SED-ML Level 1 Version 4, Section 2.2.3.2.)

A DataSource object may contain one and only one instance of the ListOfSlices element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.3.2.)

The value of the attribute indexSet of a DataSource object must be the identifier of an
existing object defined in the document. (Reference: SED-ML Level 1 Version 4, Section
2.2.3.2.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfSlices container object may only contain Slice objects. (Reference: SED-ML Level 1
Version 4, Section 2.2.3.2.)

A ListOfSlices object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.3.2.)

Rules for Slice objects

23901 1 A Slice object may have the optional SED-ML Level 1 attributes id, name, and metaid.

23902

23903

23904

23905

23906

23907

23908

23950

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Slice object may have the optional SED-ML Level 1 subobjects for notes and annotations.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Slice object must have the required attribute reference, and may have the optional at-
tributes value, index, startIndex and endIndex. (Reference: SED-ML Level 1 Version 4,
Section 2.2.3.3.)

The value of the attribute reference of a Slice object must be the identifier of an existing
object defined in the document. (Reference: SED-ML Level 1 Version 4, Section 2.2.3.3.)

The attribute value on a Slice must have a value of data type string. (Reference: SED-ML
Level 1 Version 4, Section 2.2.3.3.)

The value of the attribute index of a Slice object must be the identifier of an existing
RepeatedTask object defined in the document. (Reference: SED-ML Level 1 Version 4,
Section 2.2.3.3.)

The attribute startIndex on a Slice must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.3.3.)

The attribute endIndex on a Slice must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.3.3.)

If a Slice defines both an startIndex and an endIndex, the value of the endIndex must be

equal to or greater than that of the startIndex. (Reference: SED-ML Level 1 Version 4,
Section 2.2.3.3)

123

Rules for ParameterEstimationTask objects

24001 @ A ParameterEstimationTask object may have the required SED-ML Level 1 attribute id

24002

24003

24004

24005

24006

24007

24008

24009

24050

24051

and the optional attributes name and metaid. (Reference: SED-ML Level 1 Version 4,
Section 2.1.2.)

A ParameterEstimationTask object may have the optional SED-ML Level 1 subobjects for
notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ParameterEstimationTask object must have the required attribute modelReference.
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

A ParameterEstimationTask object must contain one and only one instance of each of the
Algorithm, Objective, ListOfAdjustableParameters and
ListOfFitExperiments elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

The value of the attribute modelReference of a ParameterEstimationTask object must be
the identifier of an existing Model object defined in the document. (Reference: SED-ML
Level 1 Version 4, Section 2.2.10.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfAdjustableParameters container object may only contain AdjustableParameter
objects. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

Apart from the general notes and annotations subobjects permitted on all SED-ML ob-
jects, a ListOfFitExperiments container object may only contain FitExperiment objects.
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

A ListOfAdjustableParameters object may have the optional SED-ML Level 1 attributes
id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

A ListOfFitExperiments object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.)

Every ParameterEstimationTask must have exactly one ListOfAdjustableParameters child
containing at least one child AdjustableParameter object. (Reference: SED-ML Level 1
Version 4, Section 2.2.10)

Every ParameterEstimationTask must have exactly one ListOfFitExperiments child con-
taining at least one child FitExperiment object. (Reference: SED-ML Level 1 Version 4,
Section 2.2.10)

Rules for Objective objects

24101 @ An Objective object may have the optional SED-ML Level 1 attributes id, name, and

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24102 W An Objective object may have the optional SED-ML Level 1 subobjects for notes and

annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

Rules for LeasiSquareObjectiveFunction objects

24201 W A LeastSquareObjectiveFunction object may have the optional SED-ML Level 1 attributes

id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24202 1 A LeastSquareObjectiveFunction object may have the optional SED-ML Level 1 subobjects

for notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

Rules for AdjustableParameter objects

24301 @ An AdjustableParameter object may have the optional SED-ML Level 1 attributes id,

name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24302 W An AdjustableParameter object may have the optional SED-ML Level 1 subobjects for

notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

124

24303

24304

24305

24306

24307

24308

24309

v

An AdjustableParameter object must have the required attribute target, and may have
the optional attributes initialValue and modelReference. (Reference: SED-ML Level 1
Version 4, Section 2.2.10.3.)

An AdjustableParameter object must contain one and only one instance of the Bounds
element, and may contain one and only one instance of the ListOfExperimentReferences
element. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.3.)

The attribute target on an AdjustableParameter must have a value of data type TargetType
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.3)

The attribute initialValue on an AdjustableParameter must have a value of data type
double. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.3.)

The value of the attribute modelReference of an AdjustableParameter object must be
the identifier of an existing Model object defined in the document. (Reference: SED-ML
Level 1 Version 4, Section 2.2.10.3.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfExperimentReferences container object may only contain ExperimentReference
objects. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.3.)

A ListOfExperimentReferences object may have the optional SED-ML Level 1 attributes
id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.3.)

Rules for ExperimentReference objects

24401 W An ExperimentReference object may have the optional SED-ML Level 1 attributes id,

name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24402 U An ExperimentReference object may have the optional SED-ML Level 1 subobjects for

notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24403 U An ExperimentReference object must have the required attribute experimentId. (Refer-

ence: SED-ML Level 1 Version 4, Section 2.2.10.5.)

24404 1 The value of the experiment attribute of a ExperimentReference must be the identifier

of an existing FitExperiment child of the parent ParameterEstimationTask. (Reference:
SED-ML Level 1 Version 4, Section 2.1.6)

Rules for FitExperiment objects

24501 1 A FitExperiment object may have the optional SED-ML Level 1 attributes id, name, and

24502

24503

24504

24505

24506

v

v

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FitExperiment object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FitExperiment object must have the required attribute type. (Reference: SED-ML
Level 1 Version 4, Section 2.2.10.6.)

A FitExperiment object must contain one and only one instance of each of the Algorithm
and
ListOfFitMappings elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.6.)

The value of the attribute type of a FitExperiment object must conform to the syn-
tax of SED-ML data type ExperimentType and may only take on the allowed values of
ExperimentType defined in SED-ML; that is, the value must be one of the following:
“steadyState” or “timeCourse”. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.6.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfFitMappings container object may only contain FitMapping objects. (Reference:
SED-ML Level 1 Version 4, Section 2.2.10.6.)

125

24507 1 A ListOfFitMappings object may have the optional SED-ML Level 1 attributes id, name,

and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.6.)

24550 1 Every FitExperiment must have exactly one ListOfFitMappings child containing at least

one child FitMapping object. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.6)

Rules for FitMapping objects

24601 1 A FitMapping object may have the optional SED-ML Level 1 attributes id, name, and

24602

24603

24604

24605

24606

24607

24608

24650

24651

24652

24653

24654

v

metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FitMapping object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A FitMapping object must have the required attributes dataSource, target and type, and
may have the optional attributes weight and pointWeight. (Reference: SED-ML Level 1
Version 4, Section 2.2.10.7.)

The value of the attribute dataSource of a FitMapping object must be the identifier of
an existing DataSource object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.10.7.)

The value of the attribute target of a FitMapping object must be the identifier of an
existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.10.7.)

The value of the attribute type of a FitMapping object must conform to the syntax of SED-
ML data type MappingType and may only take on the allowed values of MappingType defined
in SED-ML; that is, the value must be one of the following: “time”, “experimental-
Condition” or “observable”. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.7.)

The attribute weight on a FitMapping must have a value of data type double. (Reference:
SED-ML Level 1 Version 4, Section 2.2.10.7.)

The value of the pointWeight attribute of a FitMapping must be the identifier of an
existing DataGenerator or DataSource object in the document. (Reference: SED-ML
Level 1 Version 4, Section 2.2.10.7)

A FitMapping object may not define both its weight attribute and its pointWeight at-
tribute, but may leave both undefined. (Reference: SED-ML Level 1 Version 4, Section
2.2.10.7)

The value of every element referenced by the pointWeight attribute of a FitMapping object
must either be non-negative or defined as notanumber for missing data. No element may
be set to “infinity”. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.7)

The value of the weight attribute of a FitMapping object must not be infinite or negative.
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.7)

The value of every element referenced by the pointWeight attribute of a FitMapping should
typically fall between 0 and 1, inclusive. (Reference: SED-ML Level 1 Version 4, Section
2.2.10.7)

The pointWeight attribute of a FitMapping, if defined, must point to a DataGenerator
or DataSource with the same dimensionality as the data referenced by the dataSource
attribute. (Reference: SED-ML Level 1 Version 4, Section 2.2.10.7)

Rules for Bounds objects

24701 4 A Bounds object may have the optional SED-ML Level 1 attributes id, name, and metaid.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

24702 W A Bounds object may have the optional SED-ML Level 1 subobjects for notes and anno-

tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

126

24703

24704

24705

24706

24750

A Bounds object must have the required attributes lowerBound, upperBound and scale.
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.4.)

The attribute lowerBound on a Bounds must have a value of data type double. (Reference:
SED-ML Level 1 Version 4, Section 2.2.10.4.)

The attribute upperBound on a Bounds must have a value of data type double. (Reference:
SED-ML Level 1 Version 4, Section 2.2.10.4.)

The value of the attribute scale of a Bounds object must conform to the syntax of SED-
ML data type ScaleType and may only take on the allowed values of ScaleType defined
in SED-ML; that is, the value must be one of the following: “linear”, “log” or “logl®”.
(Reference: SED-ML Level 1 Version 4, Section 2.2.10.4.)

The value of the upperBound attribute of a Bounds object must be greater than or equal
to the value of the lowerBound attribute. (Reference: SED-ML Level 1 Version 4, Section
2.2.10.4)

Rules for Figure objects

24801 W A Figure object may have the optional SED-ML Level 1 attributes id, name, and metaid.

24802

24803

24804

24805

24806

24807

24808

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Figure object may have the optional SED-ML Level 1 subobjects for notes and annota-
tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Figure object must have the required attributes numRows and numCols. (Reference:
SED-ML Level 1 Version 4, Section 2.2.15.)

A Figure object may contain one and only one instance of the ListOfSubPlots element.
(Reference: SED-ML Level 1 Version 4, Section 2.2.15.)

The attribute numRows on a Figure must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.15.)

The attribute numCols on a Figure must have a value of data type integer. (Reference:
SED-ML Level 1 Version 4, Section 2.2.15.)

Apart from the general notes and annotations subobjects permitted on all SED-ML objects,
a ListOfSubPlots container object may only contain SubPlot objects. (Reference: SED-ML
Level 1 Version 4, Section 2.2.15.)

A ListOfSubPlots object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.2.15.)

Rules for SubPlot objects

24901 @ A SubPlot object may have the optional SED-ML Level 1 attributes id, name, and metaid.

24902

24903

24904

24905

v

v

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SubPlot object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A SubPlot object must have the required attributes plot, row and col, and may have the
optional attributes rowSpan and colSpan. (Reference: SED-ML Level 1 Version 4, Section
2.2.15.1.)

The value of the attribute plot of a SubPlot object must be the identifier of an existing
Plot object defined in the document. (Reference: SED-ML Level 1 Version 4, Section
2.2.15.1.)

The attribute row on a SubPlot must have a positive value of data type integer. (Refer-
ence: SED-ML Level 1 Version 4, Section 2.2.15.1.)

127

24906

24907

24908

24950

24951

The attribute col on a SubPlot must have a positive value of data type integer. (Refer-
ence: SED-ML Level 1 Version 4, Section 2.2.15.1.)

The attribute rowSpan on a SubPlot must have a positive value of data type integer.
(Reference: SED-ML Level 1 Version 4, Section 2.2.15.1.)

The attribute colSpan on a SubPlot must have a positive value of data type integer.
(Reference: SED-ML Level 1 Version 4, Section 2.2.15.1.)

If defined, the rowSpan attribute of a SubPlot must have a value greater than or equal to
one, and less than or equal to one plus the numRows attribute of the parent Figure minus
the row attribute of the SubPlot. (Reference: SED-ML Level 1 Version 4, Section 2.2.15.1)

If defined, the colSpan attribute of a SubPlot must have a value greater than or equal to
one, and less than or equal to one plus the numCols attribute of the parent Figure minus
the col attribute of the SubPlot. (Reference: SED-ML Level 1 Version 4, Section 2.2.15.1)

Rules for Axis objects

25001 W An Axis object may have the optional SED-ML Level 1 attributes id, name, and metaid.

25002

25003

25004

25005

25006

25007

25008

25009

25050

v

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An Axis object may have the optional SED-ML Level 1 subobjects for notes and annota-
tions. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An Axis object must have the required attribute type, and may have the optional attributes
min, max, grid, style and reverse. (Reference: SED-ML Level 1 Version 4, Section
2.2.12.4.)

The value of the attribute type of an Axis object must conform to the syntax of SED-ML
data type AxisType and may only take on the allowed values of AxisType defined in SED-
ML; that is, the value must be one of the following: “linear” or “logl0”. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.4.)

The attribute min on an Axis must have a value of data type double. (Reference: SED-ML
Level 1 Version 4, Section 2.2.12.4.)

The attribute max on an Axis must have a value of data type double. (Reference: SED-ML
Level 1 Version 4, Section 2.2.12.4.)

The attribute grid on an Axis must have a value of data type boolean. (Reference: SED-
ML Level 1 Version 4, Section 2.2.12.4.)

The value of the attribute style of an Axis object must be the identifier of an existing
Style object defined in the document. (Reference: SED-ML Level 1 Version 4, Section
2.2.12.4.)

The attribute reverse on an Axis must have a value of data type boolean. (Reference:
SED-ML Level 1 Version 4, Section 2.2.12.4.)

If an Axis defines both its max attribute and its min attribute, the value of the max must
be greater than or equal to the value of the min attribute. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.4)

Rules for Style objects

25101 @ A Style object may have the required SED-ML Level 1 attribute id and the optional

attributes name and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25102 W A Style object may have the optional SED-ML Level 1 subobjects for notes and annotations.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25103 W A Style object must have the required attribute id, and may have the optional attribute

baseStyle. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.)

128

25104 1 A Style object may contain one and only one instance of each of the Line, Marker and Fill

elements. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.)

25105 W The value of the attribute baseStyle of a Style object must be the identifier of an existing

Style object defined in the document. (Reference: SED-ML Level 1 Version 4, Section
2.2.18.)

Rules for Line objects

25201

25202

25203

25204

25205

25206

v

v

A Line object may have the optional SED-ML Level 1 attributes id, name, and metaid.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Line object may have the optional SED-ML Level 1 subobjects for notes and annotations.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Line object may have the optional attributes type, color and thickness. (Reference:
SED-ML Level 1 Version 4, Section 2.2.18.1.)

The value of the attribute type of a Line object must conform to the syntax of SED-ML
data type LineType and may only take on the allowed values of LineType defined in SED-
ML; that is, the value must be one of the following: “none”, “solid”, “dash”, “dot”,
“dashDot” or “dashDotDot”. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.1.)

The attribute color on a Line must have a value of data type SedColor (Reference: SED-
ML Level 1 Version 4, Section 2.2.18.1)

The attribute thickness on a Line must have a non-negative value of data type double.
(Reference: SED-ML Level 1 Version 4, Section 2.2.18.1.)

Rules for Marker objects

25301 W A Marker object may have the optional SED-ML Level 1 attributes id, name, and metaid.

25302

25303

25304

25305

25306

25307

25308

v

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Marker object may have the optional SED-ML Level 1 subobjects for notes and anno-
tations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Marker object may have the optional attributes size, type, fill, lineColor and
lineThickness. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.2.)

The attribute size on a Marker must have a non-negative value of data type double.
(Reference: SED-ML Level 1 Version 4, Section 2.2.18.2.)

The value of the attribute type of a Marker object must conform to the syntax of SED-ML
data type MarkerType and may only take on the allowed values of MarkerType defined in
SED-ML; that is, the value must be one of the following: “none”, “square”, “circle”,
“diamond”, “xCross”, “plus”, “star”, “triangleUp”, “triangleDown”, “triangleLeft”,
“triangleRight”, “hDash” or “vDash”. (Reference: SED-ML Level 1 Version 4, Section
2.2.18.2.)

The attribute £ill on a Marker must have a value of data type SedColor (Reference:
SED-ML Level 1 Version 4, Section 2.2.18.2)

The attribute lineColor on a Marker must have a value of data type SedColor (Reference:
SED-ML Level 1 Version 4, Section 2.2.18.2)

The attribute lineThickness on a Marker must have a non-negative value of data type
double. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.2.)

Rules for Fill objects

25401 W A Fill object may have the optional SED-ML Level 1 attributes id, name, and metaid.

(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

129

25402 U

25403 U

25404 U

A Fill object may have the optional SED-ML Level 1 subobjects for notes and annotations.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A Fill object must have the required attribute color, and may have the optional attribute
secondColor. (Reference: SED-ML Level 1 Version 4, Section 2.2.18.3.)

The attribute color on a Fill must have a value of data type SedColor (Reference: SED-ML
Level 1 Version 4, Section 2.2.18.3)

Rules for AppliedDimension objects

25501 U

25502 U

25503 U

25504 U

25505 U

25550 U

An AppliedDimension object may have the optional SED-ML Level 1 attributes id, name,
and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AppliedDimension object may have the optional SED-ML Level 1 subobjects for notes
and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

An AppliedDimension object may have the optional attributes target and dimensionTarget.
(Reference: SED-ML Level 1 Version 4, Section 2.1.7.)

The value of The value of the target attribute of an AppliedDimension must be the
identifier of an existing RepeatedTask or SubTask object in the document, or the identifier
of a Task referenced by a SubTask. (Reference: SED-ML Level 1 Version 4, Section 2.1.7)

The value of the dimensionTarget of an AppliedDimension must be the identifier of a
dimension of the referenced data. (Reference: SED-ML Level 1 Version 4, Section 2.1.7)

Every AppliedDimension must have either its target attribute or its dimensionTarget
attribute set, but not both. (Reference: SED-ML Level 1 Version 4, Section 2.1.7)

Rules for DataRange objects

25601 Ul

25602 U

25603 U

25604 U

A DataRange object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataRange object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A DataRange object must have the required attribute sourceRef. (Reference: SED-ML
Level 1 Version 4, Section 2.2.9.3.5.)

The value of the attribute sourceRef of a DataRange object must be the identifier of an
existing DataDescription object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.9.3.5.)

Rules for ShadedArea objects

25701 U

25702 U

25703 U

25704 U

25705 U

25750 U

A ShadedArea object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ShadedArea object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

A ShadedArea object must have the required attributes yDataReferenceFrom and yData-
ReferenceTo. (Reference: SED-ML Level 1 Version 4, Section 2.2.12.7.)

The value of the attribute yDataReferenceFrom of a ShadedArea object must be the iden-
tifier of an existing DataGenerator object defined in the document. (Reference: SED-ML
Level 1 Version 4, Section 2.2.12.7.)

The value of the attribute yDataReferenceTo of a Shaded Area object must be the identifier
of an existing DataGenerator object defined in the document. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.7.)

The yDataReferenceFrom and yDataReferenceTo attributes of a ShadedArea must ref-
erence data with the same dimensionality as each other. (Reference: SED-ML Level 1
Version 4, Section 2.2.12.7)

130

Rules for ParameterEstimationResultPlot objects

25801 W A ParameterEstimationResultPlot object may have the optional SED-ML Level 1 at-
tributes id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25802 I A ParameterEstimationResultPlot object may have the optional SED-ML Level 1 subob-
jects for notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25803 I A ParameterEstimationResultPlot object must have the required attribute taskReference.
(Reference: SED-ML Level 1 Version 4, Section 2.2.16.)

25804 1 The value of the attribute taskReference of a ParameterEstimationResultPlot object must
be the identifier of an existing ParameterEstimationTask object defined in the document.
(Reference: SED-ML Level 1 Version 4, Section 2.2.16.)
Rules for WaterfallPlot objects

25901 1 A WaterfallPlot object may have the optional SED-ML Level 1 attributes id, name, and
metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25902 I A WaterfallPlot object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

25903 U A WaterfallPlot object must have the required attribute taskReference. (Reference: SED-
ML Level 1 Version 4, Section 2.2.17.)

25904 U The value of the attribute taskReference of a WaterfallPlot object must be the identifier
of an existing ParameterEstimationTask object defined in the document. (Reference: SED-
ML Level 1 Version 4, Section 2.2.17.)

Rules for ParameterEstimationReport objects

26001 W A ParameterEstimationReport object may have the optional SED-ML Level 1 attributes
id, name, and metaid. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

26002 U A ParameterEstimationReport object may have the optional SED-ML Level 1 subobjects
for notes and annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

26003 W A ParameterEstimationReport object must have the required attribute taskReference.
(Reference: SED-ML Level 1 Version 4, Section 2.2.14.)

26004 U The value of the attribute taskReference of a ParameterEstimationReport object must
be the identifier of an existing ParameterEstimationTask object defined in the document.
(Reference: SED-ML Level 1 Version 4, Section 2.2.14.)
Rules for Analysis objects

26101 W An Analysis object may have the optional SED-ML Level 1 attributes id, name, and metaid.
(Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

26102 1 An Analysis object may have the optional SED-ML Level 1 subobjects for notes and
annotations. (Reference: SED-ML Level 1 Version 4, Section 2.1.2.)

131

Bibliography

[1]

F. T. Bergmann, R. Adams, S. Moodie, J. Cooper, M. Glont, M. Golebiewski, M. Hucka, C. Laibe,
A. K. Miller, D. P. Nickerson, B. G. Olivier, N. Rodriguez, H. M. Sauro, M. Scharm, S. Soiland-
Reyes, D. Waltemath, F. Yvon, and N. Le Novere. COMBINE archive and OMEX format: one file
to share all information to reproduce a modeling project. BMC' bioinformatics, 15:369, Dec. 2014.

F. T. Bergmann, D. Nickerson, D. Waltemath, and M. Scharm. SED-ML web tools: generate,
modify and export standard-compliant simulation studies. Bioinformatics, 33(8):1253-1254, 2017.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier (URI): Generic Syntax,
2005.

P. V. Biron and A. Malhotra. XML Schema part 2: Datatypes (W3C candidate recommendation
24 October 2000). Available via the World Wide Web at http://www.w3.org/TR/xmlschema-2/.,
2000.

D. Carlisle, P. Ton, R. Miner, and N. Poppelier. Mathematical Markup Language (MathML) version
2.0. W8C Recommendation, 21, 2001.

K. Choi, J. K. Medley, C. Cannistra, M. Konig, L. Smith, K. Stocking, and H. M. Sauro. Tellurium:
A python based modeling and reproducibility platform for systems biology. bioRziv, 2016.

J. Clarke and S. DeRose. XML Path Language (XPath) version 1.0, 1999.

M. Courtot, N. Juty, C. Kniipfer, D. Waltemath, A. Dréger, A. andFinney, M. Golebiewski,
S. Hoops, S. Keating, D. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes,
M. Pocock, N. Rodriguez, A. Villeger, S. Wimalaratne, C. Laibe, M. Hucka, and N. Le Novere.
Controlled vocabularies and semantics in Systems Biology. Mol Sys Biol, 7, Oct. 2011.

A. A. Cuellar, C. M. Lloyd, P. F. Nielson, M. D. B. Halstead, D. P. Bullivant, D. P. Nickerson,
and P. J. Hunter. An overview of CellML 1.1, a biological model description language. Simulation,
79(12):740-747, 2003.

M. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature,
403(6767):335-338, Jan. 2000.

A. Garny and P. J. Hunter. OpenCOR: a modular and interoperable approach to computational
biology. Frontiers in physiology, 6, 2015.

T. W. Gillespie. Understanding waterfall plots. Journal of the advanced practitioner in oncology,
3(2):106, 2012.

N. Goddard, M. Hucka, F. Howell, H. Cornelis, K. Skankar, and D. Beeman. Towards NeuroML:
Model Description Methods for Collaborative Modeling in Neuroscience. Phil. Trans. Royal Society
series B, 356:1209-1228, 2001.

A. Hoffmann, A. Levchenko, M. L. Scott, and D. Baltimore. The IkB-NF-xB signaling module:
temporal control and selective gene activation. Science, 298(5596):1241-1245, 2002.

M. Hucka, F. Bergmann, S. Hoops, S. Keating, S. Sahle, and D. Wilkinson. The Systems Biology
Markup Language (SBML): Language Specification for Level 3 Version 1 Core (Release 1 Candidate).
Nature Precedings, January 2010.

132

http://www.w3.org/TR/xmlschema-2/

[16]

[17]

[23]

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin, B. J. Bornstein,
D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. 1.
Goryanin, W. J. Hedley, T. C. Hodgman, J. H. Hofmeyr, P. J. Hunter, N. S. Juty, J. L. Kasberger,
A. Kremling, U. Kummer, N. Le Novere, L. M. Loew, D. Lucio, P. Mendes, E. Minch, E. D.
Mjolsness, Y. Nakayama, M. R. Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro,
T. S. Shimizu, H. D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, and J. Wang. The
systems biology markup language (SBML): a medium for representation and exchange of biochemical
network models. Bioinformatics, 19(4):524-531, March 2003.

N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro,
M. Schilstra, B. Shapiro, J. L. Snoep, and M. Hucka. BioModels Database: a free, centralized
database of curated, published, quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res, 34(Database issue), January 2006.

J.-C. Leloup, D. Gonze, and A. Goldbeter. Limit cycle models for circadian rhythms based on
transcriptional regulation in drosophila and neurospora. Journal of Biological Rhythms, 14(6):433—
448, 1999.

C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah, L. Li, E. He, A. Henry,
M. Stefan, J. Snoep, M. Hucka, N. Le Novere, and C. Laibe. BioModels Database: An enhanced,
curated and annotated resource for published quantitative kinetic models. BMC Systems Biology,
4(1):92+, June 2010.

S. Pemberton et al. XHTML 1.0: The Extensible HyperText Markup Language—W3C Recommen-
dation 26 January 2000. World Wide Web Consortium (W3C)(August 2002), 2002.

H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema part 1: Structures
(W3C candidate recommendation 24 October 2000). Available online via the World Wide Web at
the address http://www.w3.org/TR/xmlschema-1/, 2000.

D. Waltemath, R. Adams, D. Beard, F. Bergmann, U. Bhalla, R. Britten, V. Chelliah, M. Cooling,
J. Cooper, E. Crampin, A. Garny, S. Hoops, M. Hucka, P. Hunter, E. Klipp, C. Laibe, A. Miller,
I. Moraru, D. Nickerson, P. Nielsen, M. Nikolski, S. Sahle, H. Sauro, H. Schmidt, J. Snoep, D. Tolle,
O. Wolkenhauer, and N. Le Novere. Minimum Information About a Simulation Experiment (MI-
ASE). PLoS Comput Biol, 7:e1001122, 2011.

D. Waltemath, R. Adams, F. T. Bergmann, M. Hucka, F. Kolpakov, A. K. Miller, I. I. Moraru,
D. Nickerson, S. Sahle, J. L. Snoep, and N. Le Novere. Reproducible computational biology ex-
periments with SED-ML: the simulation experiment description markup language. BMC' systems
biology, 5(1):198, 2011.

133

http://www.w3.org/TR/xmlschema-1/

	Introduction
	Color conventions in this document
	SED-ML overview
	Example simulation experiment
	Time-course simulation
	Applying pre-processing
	Applying post-processing

	SED-ML technical specification
	General data types, attributes and classes
	Primitive data types
	ID
	SId
	[type:sidref]SIdRef
	TargetType
	XPath
	MathML
	anyURI
	URN
	NuMLSId
	NuMLSIdRef
	CurveType
	SurfaceType
	LineType
	SedColor
	MarkerType
	MappingType
	ExperimentType
	AxisType
	ScaleType

	SEDBase
	Notes
	Annotation
	Parameter
	Variable
	AppliedDimension
	Calculation
	Math

	General attributes and elements
	kisaoID
	listOf* containers

	Reference relations
	modelReference
	simulationReference
	taskReference

	SED-ML Components
	SED-ML top level element
	xmlns
	level
	version
	listOfDataDescriptions
	listOfModels
	listOfSimulations
	listOfTasks
	listOfDataGenerators
	listOfOutputs
	listOfStyles
	listOfAlgorithmParameters (global)

	DataDescription
	DataDescription components
	DimensionDescription
	DataSource
	Slice

	Model
	Change
	NewXML
	AddXML
	ChangeXML
	RemoveXML
	ChangeAttribute
	ComputeChange

	Simulation
	UniformTimeCourse
	OneStep
	SteadyState
	Analysis

	Simulation components
	Algorithm
	AlgorithmParameter

	AbstractTask
	Task
	Repeated Task

	Task components
	SubTask
	SetValue
	Range

	ParameterEstimationTask
	Objective
	LeastSquareObjectiveFunction
	AdjustableParameter
	Bounds
	ExperimentReference
	FitExperiment
	FitMapping

	DataGenerator
	Output
	Plot
	Plot2D
	Plot3D
	Axis
	AbstractCurve
	Curve
	ShadedArea
	Surface

	Report
	DataSet

	ParameterEstimationReport
	Figure
	SubPlot

	ParameterEstimationResultPlot
	WaterfallPlot
	Style
	Line
	Marker
	Fill

	Concepts used in SED-ML
	MathML
	MathML elements
	MathML symbols
	MathML csymbols for dimensional input
	MathML Distribution Functions

	NA values

	URI scheme
	Model references
	Data references
	Symbols
	Annotation Scheme

	URN scheme
	Language references
	Data format references
	NuML (Numerical Markup Language)
	CSV (Comma Separated Values)
	TSV (Tab Separated Values)
	HDF5 (Hierarchical Data Format version 5)

	XPath
	NuML
	KiSAO
	COMBINE archive
	SED-ML resources

	Acknowledgements
	Examples
	Example simulation experiment (L1V3_repressilator.omex)
	Simulation experiments with dataDescriptions
	Plotting data with simulations (L1V3_plotting-data-numl.omex)

	Simulation experiments with repeatedTasks
	Time course parameter scan (L1V3_repeated-scan-oscli.omex)
	Steady state parameter scan (L1V3_repeated-steady-scan-oscli.omex)
	Stochastic simulation (L1V3_repeated-stochastic-runs.omex)
	Simulation perturbation (L1V3_oscli-nested-pulse.omex)
	2D steady state parameter scan (L1V3_parameter-scan-2d.omex)

	Simulation experiments with different model languages
	Van der Pol oscillator in SBML (L1V3_vanderpol-sbml.omex)
	Van der Pol oscillator in CellML (L1V3_vanderpol-cellml.omex)

	Reproducing publication results
	Le Loup model (L1V3_leloup-sbml.omex)
	IkappaB signaling (L1V3_ikkapab.omex)

	Validation
	Validation of SED-ML documents
	Validation and consistency rules

